The cross section for production of $\Lambda$ and $\Sigma^0$ particles in lead by $K^0_L$, mesons with a mean energy E = 150 MeV is measured. The cross section is found to be $\sigma = (212 \pm 38) \times 10^{-27}$ cm$^2$
No description provided.
First measurements of the W -> lnu and Z/gamma* -> ll (l = e, mu) production cross sections in proton-proton collisions at sqrt(s) = 7 TeV are presented using data recorded by the ATLAS experiment at the LHC. The results are based on 2250 W -> lnu and 179 Z/gamma* -> ll candidate events selected from a data set corresponding to an integrated luminosity of approximately 320 nb-1. The measured total W and Z/gamma*-boson production cross sections times the respective leptonic branching ratios for the combined electron and muon channels are $\stotW$ * BR(W -> lnu) = 9.96 +- 0.23(stat) +- 0.50(syst) +- 1.10(lumi) nb and $\stotZg$ * BR(Z/gamma* -> ll) = 0.82 +- 0.06(stat) +- 0.05(syst) +- 0.09(lumi) nb (within the invariant mass window 66 < m_ll < 116 GeV). The W/Z cross-section ratio is measured to be 11.7 +- 0.9(stat) +- 0.4(syst). In addition, measurements of the W+ and W- production cross sections and of the lepton charge asymmetry are reported. Theoretical predictions based on NNLO QCD calculations are found to agree with the measurements.
Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.
Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nubar final state.
Measured fiducial cross section times leptonic branching ratio for W+/- production in the combined W+ -> e+ nu and W- -> e- nubar final state.
A search for new heavy particles manifested as resonances in two-jet final states is presented. The data were produced in 7 TeV proton-proton collisions by the Large Hadron Collider (LHC) and correspond to an integrated luminosity of 315 nb^-1 collected by the ATLAS detector. No resonances were observed. Upper limits were set on the product of cross section and signal acceptance for excited-quark (q*) production as a function of q* mass. These exclude at the 95% CL the q* mass interval 0.30 < mq* < 1.26 TeV, extending the reach of previous experiments.
The dijet mass distribution (NUMBER OF EVENTS).
95 PCT CL upper limit of the cross section x acceptance.
The production of two high-p_T jets in the interactions of quasi-real photons in e+e- collisions at sqrt{s_ee} from 189 GeV to 209 GeV is studied with data corresponding to an integrated e+e- luminosity of 550 pb^{-1}. The jets reconstructed by the k_T cluster algorithm are defined within the pseudo-rapidity range -1 < eta < 1 and with jet transverse momentum, p_T, above 3 GeV/c. The differential di-jet cross-section is measured as a function of the mean transverse momentum ptmean of the jets and is compared to perturbative QCD calculations.
Total cross section for dijet production. Errors are combined statistics and systematics.
Measured dijet production cross section as a function of the mean jet transverse momentum. Errors include both statistics and systematics.
Measured dijet production cross section as a function of jet pseudorapiditydifference. Errors include both statistics and systematics.
We present a measurement of the pion form factor based on e+e- annihilation data from the CMD-2 detector in the energy range 0.6<sqrt(s)<1.0 GeV with a systematic uncertainty of 0.8%. A data sample is five times larger than that used in our previous measurement.
Measured values of the pion form factor. The errors are statistical only.
Measured value of the bare PI+ PI- cross section including corrections for radiative effects but excluding corrections for vacuum polarization effects. The errors are statistical only.
The cross section of the process e+e- -> pi+pi- has been measured at the CMD-2 detector in the 370-520 MeV center-of-mass (c.m.) energy range. A systematic uncertainty of the measurement is 0.7 %. Using all CMD-2 data on the pion form factor, the pion electromagnetic radius was calculated. The cross section of muon pair production was also determined.
The measured Born muon pair production cross section. Errors are statistical only.
The measured pion form factor. The errors are statistical only.
The measured bare PI+ PI- production cross section. This is corrected for radiative effects but excludes a correction for vacuum polarization effects. The errors are statistical only.
$K^0_SK^0_S$ production in two-photon collisions has been studied using a 397.6 fb$^{-1}$ data sample collected with the Belle detector at the KEKB $e^+e^-$ collider. For the first time the cross sections are measured in the two-photon center-of-mass energy range between 2.4 GeV and 4.0 GeV and angular range $|\cos\theta^*|<0.6$. Combining the results with measurements of $\gamma\gamma\to K^+K^-$ from Belle, we observe that the cross section ratio $\sigma(K^0_SK^0_S)/\sigma(K^+K^-)$ decreases from ~0.13 to ~0.01 with increasing energy. Signals for the $\chi_{c0}$ and $\chi_{c2}$ charmonium states are also observed.
Total cross section for the process GAMMA GAMMA --> K0S K0S.
Angular distribution of the cross section in the W range 2.4 to 2.5 GeV.
Angular distribution of the cross section in the W range 2.5 to 2.6 GeV.
We report a measurement of the exclusive $e^+e^- \to D^{(*)\pm}{D}{}^{*\mp}$ cross section as a function of center-of-mass energy near the $D^{(*)^{\pm}}{D}{}^{*\mp}$ threshold with initial state radiation. A partial reconstruction technique is used to increase the efficiency and to suppress background. The analysis is based on a data sample collected with the Belle detector at the $\Upsilon(4S)$ resonance and nearby continuum with an integrated luminosity of 547.8 $\mathrm{fb}^{-1}$ at the KEKB asymmetric-energy $e^+ e^-$ collider.
Cross section for E+ E- --> D*+ D*-.
Cross section for E+ E- --> D+ D*- (plus charged conjugate).
The cross section of the process e+e−→π+π−π0 has been measured in the c.m. energy range 984–1060 MeV with the CMD-2 detector at the VEPP-2M collider. The obtained value of Br(ϕ→e+e−)Br(ϕ→π+π−π0)=(4.51±0.16±0.11)×10−5 is in good agreement with the previous measurements and has the best accuracy. Analysis of the Dalitz plot was performed. The contributions of the dominant ϕ→ρπ mechanism as well as of a small direct ϕ→3π amplitude were determined.
The Born cross section of the process e+e- -> pi+pi-pi0. The ranges of the c.m.s. energies are [2E-2*sigma, 2E+2*sigma], where sigma is statistical uncertainty of the VEPP-2M collider beam energy. The 2.5% systematic uncertainty of the cross section is fully correlated across the c.m.s. energy points.
This paper presents DELPHI measurements and interpretations of cross-sections, forward-backward asymmetries, and angular distributions, for the e+e- -> ffbar process for centre-of-mass energies above the Z resonance, from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are consistent with the predictions of the Standard Model and are used to study a variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering and several models which include physics beyond the Standard Model: the exchange of Z' bosons, contact interactions between fermions, the exchange of gravitons in large extra dimensions and the exchange of sneutrino in R-parity violating supersymmetry.
Measured cross sections and forward-backward asymmetries for non-radiative E+ E- --> E+ E- events.
Differential cross sections for non-radiative E+ E- --> E+ E- events at centre of mass energy 189 GeV.
Differential cross sections for non-radiative E+ E- --> E+ E- events at centre of mass energy 192 GeV.