Using data from Fermilab fixed-target experiment E769, we have measured particle-antiparticle production asymmetries for Lambda0 hyperons in 250 GeV/c pi+-, K+- and p -- nucleon interactions. The asymmetries are measured as functions of Feynman-x (x_F) and p_t^2 over the ranges -0.12<=x_F<=0.12 and 0<=p_t^2<=3 (GeV/c)^2 (for positive beam) and -0.12<=x_F<=0.4 and 0<=p_t^2<=10 (GeV/c)^2 (for negative beam). We find substantial asymmetries, even at x_F around zero. We also observe leading-particle-type asymmetries. These latter effects are qualitatively as expected from valence-quark content of the target and variety of projectiles studied.
LAMBDA production asymmetries versus XL for the positive beams.
LAMBDA production asymmetries versus PT**2 for the positive beams.
LAMBDA production asymmetries versus XL for the negative beams.
We measure the relative cross sections for D mesons produced in interactions of π− and π+ beams with targets of Be, Cu, Al, and W. The measurement is based on 1400 fully reconstructed decays of the types D0→K−π+, D+→K−π+π+, and charge conjugates. We find that the cross section for the production of both neutral and charged D’s by either π− or π+ is well fitted by the form Aα where A is the atomic mass and α=1.00±0.05±0.02, where the errors are statistical and systematic, respectively. There is no significant dependence of α on the transverse or longitudinal momentum of the D meson or on the charge of either the incident pion or the produced D mesons.
No description provided.
We measure the differential cross section with respect to Feynman-x (xF) and transverse momentum (PT) for charm meson production using targets of Be, Al, Cu, and W. In the range 0.1
No description provided.
Results of fit to DSIG/DXL distribution of the form (1-XL)**POWER in the XL range 0.1 to 0.7. Statistical errors only. Systematic errors are small in comparison.
Results of fit to DSIG/DPT**2 distribution of the form exp(-POWER*PT**2) in the PT**2 range 0.0 to 4.0 GeV**2.
We report the observation of the Cabibbo-suppressed decays \lcpkk\ and \lcpphi\ using data collected with the CLEO II detector at CESR. The latter mode, observed for the first time with significant statistics, is of interest as a test of color-suppression in charm decays. We have determined the branching ratios for these modes relative to \lcpkpi\ and compared our results with theory.
Branching ratio of Cabibbo-suppressed and resolved modes.
Using data recorded by the CLEO II detector at the Cornell Electron Storage Ring, we report the first observation of an excited charmed baryon decaying into Ξc0π+. The state has mass difference M(Ξc0π+)−M(Ξc0) of 174.3±0.5±1.0MeV/c2, and a width of <3.1MeV/c2 (90% confidence level limit). We identify the new state as the Ξc*+, the isospin partner of the recently discovered Ξc*0.
CONST(NAME=EPS) is the parameter of the Peterson fragmentation function (C.Peterson et al., PR D27, 105 (1983)) D(N)/D(X) = FD(X) = const * (1/X)*1/(1- (1/X)-CONST(NAME=EPS)/(1-X))**2. Charged conjugate states are undestood.
This paper describes new measurements from CLEO of the inclusive B→Ds+X branching fraction as well as the B+→Ds(*)+D¯(*)0 and B0→Ds(*)+D(*)− branching fractions. The inclusive branching fraction is B(B→Ds+X)=(12.11±0.39±0.88±1.38)% where the first error is statistical, the second is the systematic error, and the third is the error due to the uncertainty in the Ds+→φπ+ branching fraction. The branching fractions for the B→Ds(*)+D¯(*) modes are found to be between 0.9% and 2.4% and are significantly more precise than previous measurements. The sum of the B→Ds(*)+D¯(*) branching fractions is consistent with the results of fits to the inclusive Ds+ momentum spectrum. Factorization is used to arrive at a value for fDs, the Ds+ decay constant. © 1996 The American Physical Society.
FORMFACTOR(NAME=FP,C=DECAY CONSTANT) is pseudoscalar meson decay constant. Three different methods are used: 1) C=MUNU: D/S+ --> MU+ NUMU, 2) C = ENU: B --> D/S+ D*BAR / B --> D*BAR E+ NU, and 3) C = PI : B --> D/S+ D*BAR / B0 - -> PI+(RHO+) D*BAR-. The F(D/S) is evaluated from B decay assuming the factorization.
Using 4.8 fb$~{-1}$ of data taken with the CLEO II detector, the branching fraction for the Cabibbo-suppressed decay $D~+\to\pi~0\ell~+\nu$ measured relative to the Cabibbo favored decay $D~+\to\bar{K~0}\ell~+\nu$ is found to be $0.046\pm 0.014\pm 0.017$. Using $V_{cs}$ and $V_{cd}$ from unitarity constraints, we determine $| f_+~{\pi}(0)/f_+~K(0)|~2=0.9\pm 0.3\pm 0.3$ We also present a 90% confidence level upper limit for the branching ratio of the decay $D~+ \to \eta e~+\nu_e$ relative to that for $D~+ \to \pi~0 e~+\nu_e$ of 1.5.
Formfactors for the D+ (D-) decay into pseudoscalar P. Charge conjugate states are implied. LEPTON+ means E+ or MU+. VCD and VCS are the elements of the CKM matrix (See R.M.Barnett et al (PDG), PR D54, 1 (1996)).
A measurement of the spin alignment of charged D^* mesons produced in continuum e^+ e^- \to c \bar{c} events at \sqrt{s}=10.5 GeV is presented. This study using 4.72 fb^{-1} of CLEO II data shows that there is little evidence of any D^* spin alignment.
Systematic errors are not given.
Systematic errors are not given.
Two decay modes of D0 --> K- PI+ and D0 --> K- PI+ PI0 are combined.
Using the CLEO II detector at CESR, we have observed two charmed states, where the higher mass state decays to D 0 π + and to D ∗0 π + , while the lower mass state decays to D ∗0 π + , but not to D 0 π + . The masses and widths were measured to be 2425±2±2 MeV/c 2 and 26 −7−4 +8+4 MeV/c 2 for the lower mass state, and 2463±3±3 MeV/c 2 and 27 −8−5 +11+5 MeV/c 2 for the higher mass state. Properties of these states, including their decay angular distributions and spin-parity assignments have been studied. The results of this analysis support the identification of these states as the charged L = 1 D 1 (2420) + and D 2 ∗ (2460) + , respectively. The isospin mass splittings between these states and their neutral partners have also been measured. This is the first full reconstruction of any decay mode of the D 1 (2420) + and the first observation of the decay of D 2 ∗ (2460) + to D ∗0 π + .
CONST(NAME=EPS) is the parameter of the Peterson fragmentation function (C.Peterson et al., PR D27, 105 (1983)) D(N)/D(Z) = FD(Z) = const * (1/Z)*1/(1 - (1/Z)-CONST(NAME=EPS)/(1-Z))**2. Charged conjugate states are undestood.
Using the CLEO~II detector, we have measured the differential cross sections for exclusive two-photon production of light pseudoscalar mesons $\pi^0$, $\eta$, and $\eta^{\prime}$. From our measurements we have obtained the form factors associated with the electromagnetic transitions $\gamma^*\gamma$ $\to$ meson. We have measured these form factors in the momentum transfer ranges from 1.5 to 9, 20, and 30 GeV$^2$ for $\pi^0$, $\eta$, and $\eta^{\prime}$, respectively, and have made comparisons to various theoretical predictions.
The results of PI0 --> GAMMA GAMMA analysis assuming Br(PI0-->2GAMMA)=0.99.
The results of ETA --> GAMMA GAMMA analysis assuming Br(ETA-->2GAMMA)=0.39.
The results of ETA --> 3PI0 analysis assuming Br(ETA-->3PI0)*Br(PI0-->2GAM MA)**3 = 0.31.