The measurement of charged-particle event shape variables is presented in inclusive inelastic pp collisions at a center-of-mass energy of 7 TeV using the ATLAS detector at the LHC. The observables studied are the transverse thrust, thrust minor and transverse sphericity, each defined using the final-state charged particles' momentum components perpendicular to the beam direction. Events with at least six charged particles are selected by a minimum-bias trigger. In addition to the differential distributions, the evolution of each event shape variable as a function of the leading charged particle transverse momentum, charged particle multiplicity and summed transverse momentum is presented. Predictions from several Monte Carlo models show significant deviations from data.
Normalized distributions of Tranverse Thrust for 4 ranges of leading particle PT.
Normalized distributions of Tranverse Thrust for 5 lower limit values of leading particle PT.
Normalized distributions of Tranverse Thrust Minor for 4 ranges of leading particle PT.
Mean values and differential distributions of event-shape variables have been studied in neutral current deep inelastic scattering using an integrated {luminosity} of 82.2 pb$^{-1}$ collected with the ZEUS detector at HERA. The kinematic range was $80 < Q^2 < 20 480\gev^2$ and $0.0024 < x < 0.6$, where $Q^2$ is the virtuality of the exchanged boson and $x$ is the Bjorken variable. The data are compared with a model based on a combination of next-to-leading-order QCD calculations with next-to-leading-logarithm corrections and the Dokshitzer-Webber non-perturbative power corrections. The power-correction method provides a reasonable description of the data for all event-shape variables studied. Nevertheless, the lack of consistency of the determination of $\alpha_s$ and of the non-perturbative parameter of the model, $\albar$, suggests the importance of higher-order processes that are not yet included in the model.
Mean value of the event shape variable 1-THRUST(C=T).
Mean value of the event shape variable B(C=T).
Mean value of the event shape variable RHO**2.
We have studied hadronic events from e+e- annihilation data at centre-of-mass energies from 91 to 209 GeV. We present distributions of event shape observables and their moments at each energy and compare with QCD Monte Carlo models. From the event shape distributions we extract the strong coupling alpha_s and test its evolution with energy scale. The results are consistent with the running of alpha_s expected from QCD. Combining all data, the value of alpha_s(M_Z) is determined to be alpha_s(M_Z) = 0.1191 +- 0.0005 (stat.) +- 0.0010 (expt.) +- 0.0011 (hadr.) +- 0.0044 (theo.). The energy evolution of the moments is also used to determine a value of alpha_s with slightly larger errors: alpha_s(M_Z) = 0.1223 +- 0.0005 (stat.) +- 0.0014 (expt.) +- 0.0016 (hadr.) +0.0054 -0.0036 (theo.).
Measured normalized differential distribution for 1-THRUST.
Measured normalized differential distribution for HEAVY-JET-MASS.
Measured normalized differential distribution for C-PARAMETER.
Inclusive event-shape variables have been measured in the current region of the Breit frame for neutral current deep inelastic ep scattering using an integrated luminosity of 45.0 pb^-1 collected with the ZEUS detector at HERA. The variables studied included thrust, jet broadening and invariant jet mass. The kinematic range covered was 10 < Q^2 < 20,480 GeV^2 and 6.10^-4 < x < 0.6, where Q^2 is the virtuality of the exchanged boson and x is the Bjorken variable. The Q dependence of the shape variables has been used in conjunction with NLO perturbative calculations and the Dokshitzer-Webber non-perturbative corrections (`power corrections') to investigate the validity of this approach.
Mean value of the event shape variables 1-THRUST(C=T) in different Q**2 and X bins.
Mean value of the event shape variables B(C=T) in different Q**2 and X bins.
Mean value of the event shape variables RHO**2 in different Q**2 and X bins.
Characteristics of the hadronic final state of diffractive deep inelastic scattering events, ep -> eXp, were studied in the kinematic range 4 < M_X < 35 GeV, 4 < Q^2 < 150 GeV^2, 70 < W < 250 GeV and 0.0003 < x_pom < 0.03 with the ZEUS detector at HERA using an integrated luminosity of 13.8 pb^{-1}. The events were tagged by identifying the diffractively scattered proton using the leading proton spectrometer. The properties of the hadronic final state, X, were studied in its center-of-mass frame using thrust, thrust angle, sphericity, energy flow, transverse energy flow and ``seagull'' distributions. As the invariant mass of the system increases, the final state becomes more collimated, more aligned and more asymmetric in the average transverse momentum with respect to the direction of the virtual photon. Comparisons of the properties of the hadronic final state with predictions from various Monte Carlo model generators suggest that the final state is dominated by qqg states at the parton level.
Thrust distribution for a DIS hadronic final state mass between 11 and 17.8GeV.
Thrust distribution for a DIS hadronic final state mass between 17.8 and 27.7 GeV.
Sphericity distribution for a DIS hadronic final state mass between 11 and 17.8 GeV.
Infrared and collinear safe event shape distributions and their mean values are determined using the data taken at five different centre of mass energies above M Z with the DELPHI detector at LEP. From the event shapes, the strong coupling α s is extracted in O ( α s 2 ), NLLA and a combined scheme using hadronisation corrections evaluated with fragmentation model generators as well as using an analytical power ansatz. Comparing these measurements to those obtained at M Z , the energy dependence (running) of α s is accessible. The logarithmic energy slope of the inverse strong coupling is measured to be d α −1 s d log (E cm ) =1.39±0.34( stat )±0.17( syst ) , in good agreement with the QCD expectation of 1.27.
Moments of the (1-THRUST) distributions at cm energies 133, 161, 172 and 183 GeV.
Moments of the Thrust Major distributions at cm energies 133, 161, 172 and 183 GeV.
Moments of the Thrust Minor distributions at cm energies 133, 161, 172 and 183 GeV.
We report the first precision measurements of the scaled momentum, the charge multiplicity, and the thrust of hadronic jets in the Breit frame in Deep Inelastic Scattering ν μ N and ν ̄ μ N charged current events over the Q 2 range from 1 to 100 GeV 2 . The neutrino data, obtained in the NOMAD experiment at the CERN SPS, extend the Q 2 -evolution of these parameters by two orders of magnitude, and with commensurate precision, when compared to those reported by the ep and e + e − experiments.
Average neutrino energy. Peak postion of distribution on log(1/z) is presented.
We have studied the structure of hadronic events with a hard, isolated photon in the final state (e + e − → Z → hadrons + γ) in the 3.6 million hadronic events collected with the L3 detector at centre-of-mass energies around 91 GeV. The centre-of-mass energy of the hadronic system is in the range 30 GeV to 86 GeV. Event shape variables have been measured at these reduced centre-of-mass energies and have been compared with the predictions of different QCD Monte Carlo programs. The event shape variables and the energy dependence of their mean values are well reproduced by QCD models. We fit distributions of several global event shape variables to resummed O (α s 2 ) calculations to determine the strong coupling constant α s over a wide range of energies. We find that the strong coupling constant α s decreases with increasing energy, as expected from QCD.
No description provided.
No description provided.
No description provided.
We present a study of the structure of hadronic events recorded by the L3 detector at LEP at the center of mass energies of 161 and 172 GeV. The data sample corresponds to an integrated luminosity of 21.25 pb −1 collected during the high energy runs of 1996. The distributions of event shape variables and the energy dependence of their mean values are well reproduced by QCD models. From a comparison of the data with resummed O ( α s 2 ) QCD calculations, we determine the strong coupling constant at the two energies. Combining this with our earlier measurements we find that the strong coupling constant decreases with increasing energy as expected in QCD.
No description provided.
Average jet multiplicity using JADE algorithm.
Average jet multiplicity using Durham algorithm.
We have studied hadronic events produced at LEP at a centre-of-mass energy of 161 GeV. We present distributions of event shape variables, jet rates, charged particle momentum spectra and multiplicities. We determine the strong coupling strength to be αs(161 GeV) = 0.101±0.005(stat.)±0.007(syst.), the mean charged particle multiplicity to be 〈nch〉(161 GeV) = 24.46 ± 0.45(stat.) ± 0.44(syst.) and the position of the peak in the ξp = ln(1/xp) distribution to be ξ0(161 GeV) = 4.00 ±0.03(stat.)±0.04(syst.). These results are compared to data taken at lower centre-of-mass energies and to analytic QCD or Monte Carlo predictions. Our measured value of αs(161 GeV) is consistent with other measurements of αs. Within the current statistical and systematic uncertainties, the PYTHIA, HERWIG and ARIADNE QCD Monte Carlo models and analytic calculations are in overall agreement with our measurements. The COJETS QCD Monte Carlo is in general agreement with the data for momentum weighted distributions like Thrust, but predicts a significantly larger charged particle multiplicity than is observed experimentally.
Determination of alpha_s.
Multiplicity and higher moments.
Thrust distribution.