Sigma+ hyperon production was measured at the COSY-11 spectrometer via the p p --> n K+ Sigma+ reaction at excess energies of Q = 13 MeV and Q = 60 MeV. These measurements continue systematic hyperon production studies via the p p --> p K+ Lambda/Sigma0 reactions where a strong decrease of the cross section ratio close-to-threshold was observed. In order to verify models developed for the description of the Lambda and Sigma0 production we have performed the measurement on the Sigma+ hyperon and found unexpectedly that the total cross section is by more than one order of magnitude larger than predicted by all anticipated models. After the reconstruction of the kaon and neutron four momenta, the Sigma+ is identified via the missing mass technique. Details of the method and the measurement will be given and discussed in view of theoretical models.
Cross section for the reaction P P --> N K+ SIGMA+ at excess energies of 13 and 60 MeV.
The production of the Lambda and Sigma0 hyperons has been measured via the pp->pK+Lambda / Sigma0 reaction at the internal COSY-11 facility in the excess energy range between 14 and 60 MeV. The transition of the Lambda/Sigma0 cross section ratio from about 28 at Q<=13 MeV to the high energy level of about 2.5 is covered by the data showing a strong decrease of the ratio between 10 and 20 MeV excess energy. Effects from the final state interactions in the p-Sigma0 channel seem to be much smaller compared to the p-Lambda one. Estimates of the effective range parameters are given for the N-Lambda and the N-Sigma systems.
Cross section for LAMBDA production.. Statistical errors only.
Cross section for SIGMA0 production.. Statistical errors only.
Energy dependence of the LAMBDA/SIGMA0 ratio.
The total cross section of the reaction pp->ppK+K- has been measured at excess energies Q=10 MeV and 28 MeV with the magnetic spectrometer COSY-11. The new data show a significant enhancement of the total cross section compared to pure phase space expectations or calculations within a one boson exchange model. In addition, we present invariant mass spectra of two particle subsystems. While the K+K- system is rather constant for different invariant masses, there is an enhancement in the pK- system towards lower masses which could at least be partially connected to the influence of the Lambda(1405) resonance.
Total cross sections.
The eta-prime meson production in the reaction pp-->pp eta-prime has been studied at excess energies of Q = 26.5, 32.5 and 46.6 MeV using the internal beam facility COSY-11 at the cooler synchrotron COSY. The total cross sections as well as one angular distribution for the highest Q-value are presented. The excitation function of the near threshold data can be described by a pure s-wave phase space distribution with the inclusion of the proton-proton final state interaction and Coulomb effects. The obtained angular distribution of the eta-prime mesons is also consistent with pure s-wave production.
Total cross section for the reaction P P --> P P ETAPRIME.
Angular distribution of the ETAPRIME in the CM system at an excess energy of 46.6 MeV. There is an additional systematic error of +24%/-35%.
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
We have measured the absolute cross section σ(θ) and complete sets of spin observables A00ij in He3(p,p) elastic scattering at energies of 200 and 500 MeV. The observables depend on linear combinations of six complex scattering amplitudes for the p−3He system and provide a severe test of current reaction models. The in-scattering plane observables (A00mm, A00ll, A00lm, and A00ml) are all in quantitative disagreement with fully microscopic nonrelativistic optical model calculations and nonrelativistic distorted wave Born approximation calculations.
A00N0 is analyzing power.
A00N0 is analyzing power.
A00NN is spin correlation parameter.
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Measurements of target asymmetries and double-polarization observables for the reaction $\gamma p\to p\pi^0\pi^0$ are reported. The data were taken with the CBELSA/TAPS experiment at the ELSA facility (Bonn University) using the Bonn frozen-spin butanol (C$_4$H$_9$OH) target, which provided transversely polarized protons. Linearly polarized photons were produced via bremsstrahlung off a diamond crystal. The data cover the photon energy range from $E_{\gamma}$=650 MeV to $E_{\gamma}$=2600 MeV and nearly the complete angular range. The results have been included in the BnGa partial wave analysis. Experimental results and the fit agree very well. Observed systematic differences in the branching ratios for decays of $N^*$ and $\Delta^*$ resonances are attributed to the internal structure of these excited nucleon states. Resonances which can be assigned to SU(6)$\times$O(3) two-oscillator configurations show larger branching ratios to intermediate states with non-zero intrinsic orbital angular momenta than resonances assigned to one-oscillator configurations.
Target asymmetry for $\pi^0\pi^0$ as a function of the polar angle for bins of the incident photon energy in the range of $E_\gamma$ = 650-2600 MeV.
Target asymmetry for $\pi^0\pi^0$ as a function of the $\pi^0\pi^0$ invariant mass for bins of the incident photon energy in the range of $E_\gamma$ = 650-2600 MeV.
Target asymmetry for $\pi^0\pi^0$ as a function of the $\phi^*$ angle for bins of the incident photon energy in the range of $E_\gamma$ = 650-2600 MeV.
A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
IRing2 for HT2>=500 GeV, NJets>=2
IRing2 for HT2>=500 GeV, NJets>=3
IRing2 for HT2>=500 GeV, NJets>=4
An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for test
The measured jet broadening distributions (B) in quark and gluon jets seperately.
Measured distributions of -LN(Y2), where Y2 is the differential one-subjet rate, that is the value of the subjet scale parameter where 2 jets appear from the single jet.
The mean subjet multiplicity (-1) for gluon jets and quark jets for different values of the subject resolution parameter Y0.