Total cross-sections of protons, anti-protons, and pi and K mesons on hydrogen and deuterium in the momentum range 6-GeV/c to 22-GeV/c

Galbraith, W. ; Jenkins, E.W. ; Kycia, T.F. ; et al.
Phys.Rev. 138 (1965) B913-B920, 1965.
Inspire Record 48756 DOI 10.17182/hepdata.5477

The total cross sections σT of p, p¯, π±, and K± on hydrogen and deuterium have been measured between 6 and 22 GeVc at intervals of 2GeVc to an accuracy greater than previously reported. The method utilized was a conventional good-geometry transmission experiment with scintillation counters subtending various solid angles at targets of liquid H2 and D2. With the increase in statistical accuracy of the data, it was found that a previously adopted procedure of linearly extrapolating to zero solid angle the partial cross sections measured at finite solid angles was not a sufficiently accurate procedure from which to deduce σT. The particle-neutron cross sections are derived by applying the Glauber screening correction to the difference between the particle-deuteron and particle-proton cross sections. The cross sections σT(π+d) and σT(π−d) are equal at all measured momenta, which confirms the validity of charge symmetry up to 20GeVc. Results are presented showing the variation of cross sections with momentum; evidence is presented for a small but significant decrease in σT(pp) [and σT(pn)] in the momentum region above 12GeVc.

0 data tables match query

Large-Angle Pion-Proton Elastic Scattering at High Energies

Orear, J. ; Rubinstein, R. ; Scarl, D.B. ; et al.
Phys.Rev. 152 (1966) 1162-1170, 1966.
Inspire Record 50774 DOI 10.17182/hepdata.407

Differential cross sections for elastic π±−p scattering have been measured at lab momenta of 8 and 12 GeV/c in a momentum-transfer region corresponding to 1.2≤−t≤6 (GeV/c)2. Also, differential cross sections near 180° were measured for 4 and 8 GeV/c pions. At momentum transfers greater than −t=2 (GeV/c)2, the π−p cross sections drop much faster with increasing angle than the corresponding p−p cross sections. Also, in the region −t≃1.3 (GeV/c)2, there is structure in the π−p angular distribution but not in the p−p angular distribution. At −t≃3 (GeV/c)2, the drop in cross section appears to stop and from then on the angular distribution is consistent with isotropy. But in the angular region 170° to 180°, the cross sections have become much larger, and sharp backward peaks are observed. Information is given on the energy and charge dependences and widths of these backward peaks.

1 data table match query

No description provided.


Measurement of the total cross section from elastic scattering in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 761 (2016) 158-178, 2016.
Inspire Record 1477585 DOI 10.17182/hepdata.73997

A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.

1 data table match query

The measured differential elastic cross section. In addition to the statistical and total systematic uncertainties, the following 22 systematic shifts are given, which are included in the profile fit with their signs: -- Constraints: Beam optics uncertainty obtained by varying the ALFA constraints in the optics fit -- QScan: Variation by +/- 0.1 % of the quadrupole strength -- Q2: Fit of the strength of Q2 using the best value for the strength of Q1 and Q3 -- Q5Q6: Variation of the strength of Q5 and Q6 by -0.2% as indicated by machine constraints -- MadX: Uncertainty related to the beam transport replacing matrix transport by MadX PTC tracking -- Qmisal: Uncertainty due to the mis-alignment of the quadrupoles in the beam line -- Q1Q3: Propagation of the optics fit uncertainty in the strenght of Q1 and Q3 on the differential elastic cross section -- Aopt: Alignment uncertainty from the optimization procedure -- Offv: Alignment uncertainty related to the vertical beam center offset -- Offh: Alignment uncertainty related to the horizontal beam center offset -- Ang: Alignment uncertainty related to the detector rotation in the x-y plane -- BGn: Uncertainty from the background normalization -- BGs: Uncertainty from the background shape -- MCres: Error from modelling of the detector response -- Slope: Residual dependence on the physics model estimated by varying the nuclear slope in the simulation by +/- 1 GeV^-2 -- Emit: Uncertainty from the emittance used to calculate beam divergence in the simulation -- Unf: Unfolding uncertainty from the data-driven closure test -- Trac: Uncertainty from the variation of the track reconstruction selection cuts -- Xing: Uncertainty from residual crossing angle in the horizontal plane -- Eff: Uncertainty from the reconstruction efficiency -- Lumi: Luminosity uncertainty (+/- 1.5%) -- Ebeam: Uncertainty from the nominal beam energy (+/- 0.65%) Small differences in the values given here compared to the published version are related to insignificant rounding issues.


Direct Experimental Reconstruction of the $P P$ Elastic Scattering Amplitudes Between 447-{MeV} and 579-{MeV}

Hausammann, R. ; Heer, E. ; Hess, R. ; et al.
Phys.Rev.D 40 (1989) 22-34, 1989.
Inspire Record 285139 DOI 10.17182/hepdata.23146

A direct experimental reconstruction of the five complex pp elastic-scattering amplitudes has been performed at 447, 497, 517, 539, and 579 MeV. The reconstruction is done over the c.m. angles from 38° to 90° and is based on either 11 or 15 spin observables depending on the angular range. The reconstructed amplitudes are presented and compared to phase-shift analysis. A smooth energy behavior is observed for the amplitudes.

10 data tables match query

No description provided.

No description provided.

No description provided.

More…

The Acceleration of Polarized Protons to 22-{GeV}/$c$ and the Measurement of Spin Spin Effects in $p$ (Polarized) + $p$ (Polarized) $\to p + p$

Khiari, F.Z. ; Cameron, P.R. ; Court, G.R. ; et al.
Phys.Rev.D 39 (1989) 45, 1989.
Inspire Record 262472 DOI 10.17182/hepdata.23245

Accelerating polarized protons to 22 GeV/c at the Brookhaven Alternating Gradient Synchro- tron required both extensive hardware modifications and a difficult commissioning process. We had to overcome 45 strong depolarizing resonances to maintain polarization up to 22 GeV/c in this strong-focusing synchrotron. At 18.5 GeV/c we measured the analyzing power A and the spin-spin correlation parameter Ann in large- P⊥2 proton-proton elastic scattering, using the polarized proton beam and a polarized proton target. We also obtained a high-precision measurement of A at P⊥2=0.3 (GeV/c)2 at 13.3 GeV/c. At 18.5 GeV/c we found that Ann=(-2±16)% at P⊥2=4.7 (GeV/c)2, where it was about 60% near 12 GeV at the Argonne Zero Gradient Synchrotron. This sharp change suggests that spin-spin forces may have a strong and unexpected energy dependence at high P⊥2.

0 data tables match query

p-p Interactions at 3 Bev

Cester, R. ; Hoang, T.F. ; Kernan, A. ;
Phys.Rev. 103 (1956) 1443-1449, 1956.
Inspire Record 945004 DOI 10.17182/hepdata.26958

Interactions initiated by 3-Bev protons of the Brookhaven Cosmotron were studied by photoemulsion technique. With appropriate criteria, 115 events are attributed to interactions of the incident beam protons with hydrogen nuclei (∼55%) and with bound protons of other nuclei (∼45%). A detailed analysis allowed the subdivision of the 115 events in categories, according to the number of π mesons (N>~0) produced in the collision. The ratio of elastic scattering to the total number of events was estimated to be σelσtotal=0.20−0.07+0.04. The observed cross section for pure elastic scattering is σel=8.9±1.0 mb. The percentages of single, double, triple, and quadruple π-meson production are respectively: 34−20+22; 35.6−23+20; 9.6−4+6; ∼1.0+3.5. Among the 20 most probable cases of single π-meson production—the estimated ratio of π+ to π0 is σπ+σπ0=5.3−1.4+0.3. The experimental results are not in agreement with the Fermi statistical-model theory (in particular the lower limit for the experimental ratio of triple to single production is given by σ3σ1>∼110 in contrast with the predicted ratio σ3σ1=167) but are not inconsistent with the Peaslee excited-state-model theory.

0 data tables match query

A Measurement of the Energy Dependence of Elastic $\pi p$ and $p p$ Scattering at Large Angles

Jenkins, K.A. ; Price, L.E. ; Klem, R. ; et al.
Phys.Rev.Lett. 40 (1978) 425, 1978.
Inspire Record 6233 DOI 10.17182/hepdata.3359

We have measured π±p and pp elastic differential cross sections in the range |cosθc.m.|<0.35 for incident momenta from 2 to 9.7 GeV/c for π−p and pp and from 2 to 6.3 GeV/c for π+p. We find that the fixed-c.m.-angle πp differential cross sections cannot be described as simple functions of s. The data are compared to the energy and angular dependence predicted by the constituent model of Gunion, Brodsky, and Blankenbecler.

1 data table match query

No description provided.


$\pi^{\pm} p$, $K^{\pm} p$, $pp$ and $p\bar{p}$ Elastic Scattering from 50-GeV/c to 175-GeV/c

The Fermilab Single Arm Spectrometer Group collaboration Ayres, D.S. ; Diebold, R. ; Maclay, G.J. ; et al.
Phys.Rev.D 15 (1977) 3105, 1977.
Inspire Record 110409 DOI 10.17182/hepdata.24653

The differential cross sections for the elastic scattering of π+, π−, K+, K−, p, and p¯ on protons have been measured in the t interval -0.04 to -0.75 GeV2 at five momenta: 50, 70, 100, 140, and 175 GeV/c. The t distributions have been parametrized by the quadratic exponential form dσdt=Aexp(B|t|+C|t|2) and the energy dependence has been described in terms of a single-pole Regge model. The pp and K+p diffraction peaks are found to shrink with α′∼0.20 and ∼0.15 GeV−2, respectively. The p¯p diffraction peak is antishrinking while π±p and K−p are relatively energy-independent. Total elastic cross sections are calculated by integrating the differential cross sections. The rapid decline in σel observed at low energies has stopped and all six reactions approach relatively constant values of σel. The ratio of σelσtot approaches a constant value for all six reactions by 100 GeV, consistent with the predictions of the geometric-scaling hypothesis. This ratio is ∼0.18 for pp and p¯p, and ∼0.12-0.14 for π±p and K±p. A crossover is observed between K+p and K−p scattering at |t|∼0.19 GeV2, and between pp and p¯p at |t|∼0.11 GeV2. Inversion of the cross sections into impact-parameter space shows that protons are quite transparent to mesons even in head-on collisions. The probability for a meson to pass through a proton head-on without interaction inelastically is ∼20% while it is only ∼6% for an incident proton or antiproton. Finally, the results are compared with various quark-model predictions.

1 data table match query

No description provided.


Excitation functions of the analyzing power in p p(pol.) scattering from 0.45-GeV to 2.5-GeV

The EDDA collaboration Altmeier, M. ; Bauer, F. ; Bisplinghoff, J. ; et al.
Phys.Rev.Lett. 85 (2000) 1819-1822, 2000.
Inspire Record 537773 DOI 10.17182/hepdata.19490

Excitation functions AN(pp,Θc.m.) of the analyzing power in pp→ elastic scattering have been measured with a polarized atomic hydrogen target for projectile momenta pp between 1000 and 3300 MeV/ c. The experiment was performed for scattering angles 30°≤Θc.m.≤90° using the recirculating beam of the proton storage ring COSY during acceleration. The resulting excitation functions and angular distributions of high internal consistency have significant impact on the recent phase shift solution SAID SP99, in particular, on the spin triplet phase shifts between 1000 and 1800 MeV, and demonstrate the limited predictive power of single-energy phase shift solutions at these energies.

1 data table match query

No description provided.


Elastic and quasi-elastic p p scattering in Li-6_H and Li-6_D targets between 1.1-GeV and 2.4-GeV.

Ball, J. ; Allgower, C.E. ; Beddo, M. ; et al.
Eur.Phys.J.C 11 (1999) 51-67, 1999.
Inspire Record 505045 DOI 10.17182/hepdata.43403

A polarized proton beam extracted from SATURNE II, the Saclay polarized target with$^6$Li compounds, and

1 data table match query

The polarization transfer parameter KNN measured with polarized protons on the polarized LiH and LiD targets. The relative uncertainty due to the P-C analysing power is +- 6 PCT.