We have studied hadronic events from e+e- annihilation data at centre-of-mass energies from 91 to 209 GeV. We present distributions of event shape observables and their moments at each energy and compare with QCD Monte Carlo models. From the event shape distributions we extract the strong coupling alpha_s and test its evolution with energy scale. The results are consistent with the running of alpha_s expected from QCD. Combining all data, the value of alpha_s(M_Z) is determined to be alpha_s(M_Z) = 0.1191 +- 0.0005 (stat.) +- 0.0010 (expt.) +- 0.0011 (hadr.) +- 0.0044 (theo.). The energy evolution of the moments is also used to determine a value of alpha_s with slightly larger errors: alpha_s(M_Z) = 0.1223 +- 0.0005 (stat.) +- 0.0014 (expt.) +- 0.0016 (hadr.) +0.0054 -0.0036 (theo.).
Measured normalized differential distribution for 1-THRUST.
Measured normalized differential distribution for HEAVY-JET-MASS.
Measured normalized differential distribution for C-PARAMETER.
A global event shape analysis of the multihadronic final states observed in neutral current deep inelastic scattering events with a large rapidity gap with respect to the proton direction is presented. The analysis is performed in the range $5 \leq Q^2 \leq 185\gev^2$ and $160 \leq W \leq 250\gev$, where $Q^2$ is the virtuality of the photon and $W$ is the virtual-photon proton centre of mass energy. Particular emphasis is placed on the dependence of the shape variables, measured in the $\gamma^*-$pomeron rest frame, on the mass of the hadronic final state, $M_X$. With increasing $M_X$ the multihadronic final state becomes more collimated and planar. The experimental results are compared with several models which attempt to describe diffractive events. The broadening effects exhibited by the data require in these models a significant gluon component of the pomeron.
Measured (uncorrected) polar distribution of the sphericity axis w.r.t. thevirtual photon direction in the (gamma*-pomeron)rest frame Data are in bins of the mass of the final state hadronic system.
Measured (uncorrected) polar distribution of the sphericity axis w.r.t. thevirtual photon direction in the (gamma*-pomeron)rest frame Data are in bins of the mass of the final state hadronic system.
Measured (uncorrected) polar distribution of the sphericity axis w.r.t. thevirtual photon direction in the (gamma*-pomeron)rest frame Data are in bins of the mass of the final state hadronic system.
We have studied hadronic events produced at LEP at a centre-of-mass energy of 161 GeV. We present distributions of event shape variables, jet rates, charged particle momentum spectra and multiplicities. We determine the strong coupling strength to be αs(161 GeV) = 0.101±0.005(stat.)±0.007(syst.), the mean charged particle multiplicity to be 〈nch〉(161 GeV) = 24.46 ± 0.45(stat.) ± 0.44(syst.) and the position of the peak in the ξp = ln(1/xp) distribution to be ξ0(161 GeV) = 4.00 ±0.03(stat.)±0.04(syst.). These results are compared to data taken at lower centre-of-mass energies and to analytic QCD or Monte Carlo predictions. Our measured value of αs(161 GeV) is consistent with other measurements of αs. Within the current statistical and systematic uncertainties, the PYTHIA, HERWIG and ARIADNE QCD Monte Carlo models and analytic calculations are in overall agreement with our measurements. The COJETS QCD Monte Carlo is in general agreement with the data for momentum weighted distributions like Thrust, but predicts a significantly larger charged particle multiplicity than is observed experimentally.
Determination of alpha_s.
Multiplicity and higher moments.
Thrust distribution.
We have observed hadronic final states produced in the decays of Z bosons. In order to study the parton structure of these events, we compare the distributions in sphericity, thurst, aplanarity, and number of jets to the predictions of several QCD-based models and to data from lower energies. The data and models agree within the present statistical precision.
Corrected event shape distributions.
Corrected event shape distributions.
Corrected event shape distributions.
We present results on the jet structure observed in multihadronic events produced by e+e− annihilation in the Mark I magnetic detector at SPEAR. The evidence for jet structure and the jet-axis angular distribution are reported. We give inclusive distributions of the hadrons in Feynman x, rapidity, and transverse momentum relative to the jet axis.
Observed particle PT with respect to jet axis for events with three or more detected charged particles.
No description provided.
No description provided.
The jet character of the hadronic final states produced ine+e− annihilations is studied in terms of jet measures such as thrust, sphericity, jet opening angle and jet masses, in the energy range 7.7 to 31.6 GeV. All distributions and averages have been corrected for detector effects and initial state radiation. The energy dependence of the averages of these jet quantities is used to estimate the contributions due to perturbative QCD and fragmentation effects. Correlations between the jet measures and the multiplicity of charged hadrons are also presented.
DIFFERENTIAL THRUST DISTRIBUTIONS WHERE THRUST IS MAX(SUM(ABS(PLONG))/SUM(ABS(P))).
MEAN THRUST VALUES AS A FUNCTION OF CM ENERGY.
DIFFERENTIAL SPERICITY DISTRIBUTIONS WHERE SPHERICITY IS 3/2*MIN(SUM(PT**2)/SUM(ABS(P))).