The ZEUS detector has been used to measure the proton structure functionF2. During 1993 HERA collided 26.7 GeV electrons on 820 GeV protons. The data sample corresponds to an integrated luminosity of 0.54 pb−1, representing a twenty fold increase in statistics compared to that of 1992. Results are presented for 7<Q2<104 GeV2 andx values as low as 3×10−4. The rapid rise inF2 asx decreases observed previously is now studied in greater detail and persists forQ2 values up to 500 GeV2.
No description provided.
No description provided.
No description provided.
An analysis of inclusive production of K0 and the meson resonances K*±(892), ρ0(770),f0(975) andf2(1270) in hadronic decays of the Z0 is presented, based on about 973,000 multihadronic events collected by the DELPHI detector at LEP during 1991 and 1992. Overall multiplicities have been determined as 1.962±0.060 K0 mesons, 0.712±0.067 K*±(892) and 1.21±0.15ρ0(770) per hadronic Z0 decay. The average multiplicities off0(975) for scaled momentum,xp, in the range 0.05≤xp≤0.6 and off2(1270) for 0.05≤xp≤1.0 are 0.098±0.016 and 0.170±0.043 respectively. Thef0(975) and ρ0(770)xp-spectra have similar shapes. Thef2(1270)/ρ0(770) ratio increases withxp. The average multiplicities and the differential cross sections are compared with the JETSET Parton Shower model. The model with default parameters fails to reproduce the experimental K0 momentum spectrum at low momentum, describes the K*±(892) and ρ0(770)xp-spectrum shapes, but significantly overestimates their production rates.
Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.
Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.
Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.
The π0 inclusive and semi-inclusive, single-spin asymmetries have been measured using transversely polarized, 200-GeV/c proton and antiproton beams colliding with an unpolarized hydrogen target. The measured asymmetries are consistent with zero within the experimental uncertainties for the kinematic region -0.15<xF<+0.15 and 1<pT<4.5 GeV/c. Improvements in the data analysis showed that our earlier large asymmetries at pT≳3 GeV/c were not correct. These data indicate that PQCD expectations seem confirmed and the higher-twist contribution to the single-spin asymmetry in π0 production at xF=0 is not large. Additional evidence for such a conclusion comes from the measurement of a semi-inclusive π0 asymmetry, where associated charged particles are detected opposite to the π0 azimuthal direction. This experiment also provides high-statistics data on the inclusive π0 cross sections for pp and p¯p collisions at √s≊19.4 GeV. © 1996 The American Physical Society.
No description provided.
Pure inclusive reaction.
Semi-inclusive reaction where at least on associated charged particle is produced at (180+-30) degrees relative to the pi0.
A prompt photon cross section measurement from the Collider Detector at Fermilab experiment is presented. Detector and trigger upgrades, as well as 6 times the integrated luminosity compared with our previous publication, have contributed to a much more precise measurement and extended PT range. As before, QCD calculations agree qualitatively with the measured cross section, but the data has a steeper slope than the calculations.
Note that the sytematic uncertainties are approximately 100 pct correlated bin to bin.
We measured the spin asymmetry in the scattering of 100 GeV longitudinally-polarized muons on transversely polarized protons. The asymmetry was found to be compatible with zero in the kinematic range $0.006<x<0.6$, $1<Q~2<30\,\mbox{GeV}~2$. {}From this result we derive the upper limits for the virtual photon--proton asymmetry $A_2$, and for the spin structure function $g_2$. For $x<0.15$, $A_2$ is significantly smaller than its positivity limit $\sqrt{R}$.
No description provided.
Nucleon spin structure function g2.
The cross section for the process e + e − → p p has been measured in the s range 3.6–5.9 GeV 2 by the FENICE experiment at the e + e − Adone storage ring and the proton electromagnetic form factor has been extracted.
Cross section measurement.
Proton form-factor measurement.
The polarization of Lambda0, AntiLambda0, Sigma+ and Xi- inclusively produced in Sigma- induced interactions at 330 GeV has been measured in the experiment WA89 at CERN. This is the first measurement of polarization of baryons produced by a hyperon beam. No polarization of AntiLambda is observed, as was also the case in proton beam data. At transverse momenta of about 1GeV/c Lambda0 and Sigma+ show little polarization, significantly lower than in the proton beam data, while Xi- have a polarization comparable to the polarization of Lambda0 produced in proton beams.
Target Consisted of a copper and a carbon block arranged side by side.
Target Consisted of a copper and a carbon block arranged side by side.
Target Consisted of a copper and a carbon block arranged side by side.
Measurements of the inclusive cross-sections forK0 and Λ production in hadronic decays of the Z are presented together with measurements of two-particle correlations within pairs of Λ andK0. The results are compared with predictions from the hadronization models Jetset, based on string fragmentation, and Herwig, based on cluster decays. TheK0 spectrum is found to be harder than predicted by both models, while the Λ spectrum is softer than predicted. The correlation measurements are all reproduced well by Jetset, while Herwig misses some of the qualitative features and overestimates the size of the\(\Lambda \bar \Lambda \) correlation. Finally, the possibility of Bose-Einstein correlation in theKS0KS0 system is discussed.
No description provided.
No description provided.
No description provided.
We summarize a search for the top quark with the Collider Detector at Fermilab (CDF) in a sample of $\bar{p}p$ collisions at $\sqrt{s}$= 1.8 TeV with an integrated luminosity of 19.3pb$~{-1}$. We find 12 events consistent with either two $W$ bosons, or a $W$ boson and at least one $b$ jet. The probability that the measured yield is consistent with the background is 0.26\%. Though the statistics are too limited to establish firmly the existence of the top quark, a natural interpretation of the excess is that it is due to $t\bar{t}$ production. Under this assumption, constrained fits to individual events yield a top quark mass of $174 \pm 10~{+13}_{-12}$ GeV/c$~2$. The $t\bar{t}$ production cross section is measured to be $13.9~{+6.1}_{-4.8}$pb. (Submitted to Physical Review Letters on May 16, 1994).
No description provided.
The W+jet angular distribution is measured using W→eν events recorded with the Collider Detector at Fermilab (CDF) during the 1988-89 and 1992-93 Tevatron runs. The data agree well with both a leading order and a next-to-leading order theoretical prediction. The shape of the angular distribution is similar to that observed in photon + jet data and significantly different from that observed in dijet data.
Data normalized to 1 in the cos(theta) range -0.6 to 0.6.
Data normalized to 1 in the abs(cos(theta)) range <0.3.