The ωπ − mass spectrum, in the reaction π −p → ωπ − pat 11.2 GeV/ c , shows the production of the B − meson with a cross section of 27 ± 5 μb as well as a clear enhancement around 1670 MeV. In the differential cross section for B − production, there is a strong forward peak and a change of slope at t ' t 0.2 GeV 2 .
CORRECTED FOR BACKGROUND AND OMEGA TAILS.
No description provided.
ABS(D-WAVE/S-WAVE) = 0.4 +- 0.1 FOR B DECAY.
None
No description provided.
No description provided.
Pion production on a CD2 target has been measured using the high-resolution magnetic spectrometer SPES I. Differential cross sections for the reaction D(p, π+)T have been determed at Tp=410, 605, and 809 MeV. The present data, together with previous results establish a complete angular distribution of the reaction D(p, π+)T at ∼ 600 MeV and the energy dependence of the differential cross section for this reaction at several constant momentum transfers.
No description provided.
No description provided.
Evidence is presented for production of Ξ* resonances, decaying into Ξπ, Ξ(1530)π, ΛK¯, and ΣK¯, in K−p interactions at 2.87 Gev/c. The data represent final combined results from a 30-events/μb hydrogen exposure and an 18-events/μb exposure in deuterium designed to study Ξ* production in the mass interval 1.46-2.07 GeV/c2. In addition to Ξ(1820) and Ξ(1940), signals have been observed at masses of 1630 MeV/c2 and 1860 MeV/c2 decaying into Ξ−π+ and YK¯, respectively. Reaction cross sections have been measured for all final states containing two visible signs of strangeness, and for the final states ΛK−K+ and Σ0K−K+.
CROSS SECTIONS ARISING FROM VARIOUS TOPOLOGIES.
K- P CROSS SECTIONS FROM DEUTERIUM TARGET EXPERIMENT. RESULTS ARE IN GOOD AGREEMENT WITH THE HYDROGEN DATA.
No description provided.
The differential cross sections for K+d coherent, breakup, and charge-exchange scattering have been measured at several momenta in the interval 250-600 MeV/c. The data have been fitted using a partial-wave analysis. Assuming an s-wave description of I=1 scattering and using data from the coherent and charge-exchange channels, a description of I=0 K+−N scattering by a combination of s and p waves in a simple single-scattering impulse model has been attempted. The phase shifts obtained are unique up to the Fermi-Yang ambiguity, which can be removed by using existing polarization results at 600 MeV/c.
COHERENT SCATTERING DIFFERENTIAL CROSS SECTION IN THE LABORATORY FRAME.
COHERENT SCATTERING DIFFERENTIAL CROSS SECTION IN THE LABORATORY FRAME.
COHERENT SCATTERING DIFFERENTIAL CROSS SECTION IN THE LABORATORY FRAME.
Three- and four-body final states with strange particles are studied in π + p and π − p interactions at 16 GeV/ c . We present cross sections and investigate their energy dependence. Production mechanism, resonance production and quantum number transfer are discussed. Strong Y ∗ (1385) production is found in the reaction π + p → Λ K + π + , while the corresponding π − p reaction is dominated by production of K ∗ (890). In the NK K π channels, the K and K are produced mainly at the same vertex, i.e. non-strangeness exchange ΔS = 0 is dominant (about 75% of the cases), whereas in the Λ K ππ channels, the Λ and K are more frequently produced at opposite vertices, i.e. | ΔS | = 1 exchange is important (about 60% of the cases). Results on the polarization of the lambdas produced in the π + p reactions are given.
No description provided.
The dominant partial waves of the diffractively produced N π system at low Nπ masses (⩽ 1.4 GeV) are determined in the reactions π ± p → π (N π ) at 16 GeV/ c . A satisfactory description of our data can only be obtained by strong contributions of both a 1 2 − S-wave and a 3 2 + P-wave, violating the Gribov-Morrison rule. Spin and parity of the diffractively produced states are found from the interference between diffraction and Δ (1236) production. The interference term is obtained by an isospin analysis.
No description provided.
<NUCLEON PION> MASS DEPENDENCE.
The inclusive cross section and the average multiplicity are evaluated for most of the charged ( π ± , p, K ± ) and neutral (γ, π 0 , K 0 , K 0 , Λ, Λ , n ) particles produced in 32 GeV/ c K − p interactions; corresponding results are obtained for each charged topology separately. New results are given for the total charged multiplicity cross sections. The average longitudinal momentum of neutrals is found to be roughly equal to that of charged particles. The π + and π − multiplicity distributions are reconstructed and compared to the π 0 and to the total charged multiplicity distributions.
No description provided.
Axis error includes +- 30/30 contribution (SYSTEMATIC ERROR FOR K0 MULTIPLICITY, WHICH IS EVALUATED FROM 2 ASSUMPTIONS: ALL K0'S COME FROM THE FINAL STATES (N K 2AK PIONS) OR (LAMBDA/SIGMA K AK PIONS) AND CHARGE DISTRIBUTION IN THESE FINAL STATES OBEYS A STATISTICAL ISOSPIN MODEL OF F.CERULUS,NC 19, 528. ALSO ASSUMED THAT SIG(K+)=SIG(KO). VALUES OF SIG(XI-) AND RATIOS SIG(SIGMA+)/SIG(LAMBDA), SIG(SIGMA-)/SIG(LAMBDA) ARE TAKEN FROM 14.3 GEV EXPERIMENT LOUEDEC 76,NC 41A, 166, STATISTICAL ERRORS BEING DOUBLED. FOR ALL ANTIBARYONS ASSUMED THAT SIG(ANTIBARYON)/SIG(BARYON)=SIG(ANTILAMBDA)/SIG(LAMBDA) =0.046+-0.020. SLOW PROTONS WITH PLAB < 1.2 GEV/C ARE IDENTIFIED, AN ESTIMATE FOR FAST PROTON PRODUCTION IS TAKEN FROM FACCINI 77,NP B127, 109).
Axis error includes +- 30/30 contribution (SYSTEMATIC ERROR FOR K0 MULTIPLICITY, WHICH IS EVALUATED FROM 2 ASSUMPTIONS: ALL K0'S COME FROM THE FINAL STATES (N K 2AK PIONS) OR (LAMBDA/SIGMA K AK PIONS) AND CHARGE DISTRIBUTION IN THESE FINAL STATES OBEYS A STATISTICAL ISOSPIN MODEL OF F.CERULUS,NC 19, 528. ALSO ASSUMED THAT SIG(K+)=SIG(KO). VALUES OF SIG(XI-) AND RATIOS SIG(SIGMA+)/SIG(LAMBDA), SIG(SIGMA-)/SIG(LAMBDA) ARE TAKEN FROM 14.3 GEV EXPERIMENT LOUEDEC 76,NC 41A, 166, STATISTICAL ERRORS BEING DOUBLED. FOR ALL ANTIBARYONS ASSUMED THAT SIG(ANTIBARYON)/SIG(BARYON)=SIG(ANTILAMBDA)/SIG(LAMBDA) =0.046+-0.020. SLOW PROTONS WITH PLAB < 1.2 GEV/C ARE IDENTIFIED, AN ESTIMATE FOR FAST PROTON PRODUCTION IS TAKEN FROM FACCINI 77,NP B127, 109).
From an experiment done with the CERN Omega spectrometer, triggered by a fast forward proton device, we present results on the differential cross section d σ d u for π − p backward elastic scattering. The d σ d u distribution agrees with an A e Bu law. The compilation of existing results shows a discrepancy between results but the ( d σ d u ) u=0 data fit perfectly an s 2 α 0 −2 dependence, as predicted by a single Δδ Regge trajectory exchange. A search for the reaction π − p → d p , with a fast forward deuteron, which can be produced by a double-baryon exchange mechanism, gives cross-section upper limits of ∼1% of the backward elastic cross section.
UMIN IS 0.0446 GEV**2.
UMIN IS 0.0333 GEV**2.
D(SIG)/DU FITTED FOR 0 < -U < 0.75 GEV**2 TO GIVE SLOPE/INTERCEPT.
Inclusive spectra are presented for π± production in 100-GeV/cp¯p interactions. The rapidity distribution for the difference (p¯p−pp) approximately scales as the difference in total cross sections in the fragmentation region between 12 and 100 GeV/c and exhibits an approximate s−12dependence in the central region.
No description provided.
No description provided.