A reinterpretation of a prior narrow-resonance search is performed to investigate the resonant production of pairs of dijet resonances via broad mediators. This analysis targets events with four resolved jets, requiring dijet invariant masses greater than 0.2 TeV and four-jet invariant masses greater than 1.6 TeV. The search uses a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ collected by the CMS experiment in proton-proton collisions at $\sqrt{s}$ = 13 TeV. The reinterpretation considers the production of new heavy four-jet resonances, with widths ranging from 1.5 to 10% of their mass, which decay to a pair of dijet resonances. This analysis probes resonant production in the four-jet and dijet mass distributions. Upper limits at 95% confidence level and significances are reported on the production cross section of new resonances as functions of their widths and masses, between 2 and 10 TeV. In particular, at a four-jet resonance mass of 8.6 TeV, the local (global) significance ranges from 3.9 (1.6) to 3.6 (1.4) standard deviations (s.d.) as the resonance width is increased from 1.5 to 10%. This relative insensitivity to the choice of width indicates that a broad resonance is an equally valid interpretation of this excess. The broad resonance hypothesis at a resonance mass of 8.6 TeV is supported by the presence of an event with a four-jet mass of 5.8 TeV and an average dijet mass of 2.0 TeV. Also, we report the reinterpretation of a second effect, at a four-jet resonance mass of 3.6 TeV, which has a local (global) significance of up to 3.9 (2.2) s.d.
Observed number of events within bins of the four-jet mass and the average mass of the two dijets.
Observed number of events within bins of the four-jet mass and the ratio $\alpha$, which is the average dijet mass divided by the four-jet mass.
Predictions of a leading order (LO) QCD simulation, normalized to an integrated luminosity of 138 fb$^{-1}$. The number of events are examined within bins of the four-jet mass and the average mass of the two dijets.
A search is performed for W' bosons decaying to a top and a bottom quark in the all-hadronic final state, in proton-proton collisions at a center-of-mass energy of 13 TeV. The analyzed data were collected by the CMS experiment between 2016 and 2018 and correspond to an integrated luminosity of 137 fb$^{-1}$. Deep neural network algorithms are used to identify the jet initiated by the bottom quark and the jet containing the decay products of the top quark when the W boson from the top quark decays hadronically. No excess above the estimated standard model background is observed. Upper limits on the production cross sections of W' bosons decaying to a top and a bottom quark are set. Both left- and right-handed W' bosons with masses below 3.4 TeV are excluded at 95% confidence level, and the most stringent limits to date on W' bosons decaying to a top and a bottom quark in the all-hadronic final state are obtained.
The reconstructed m$_{tb}$ distributions in data and expected background in signal region for the data taking period of 2016. Yield in each bin is divided by the corresponding bin width.
The reconstructed m$_{tb}$ distributions in data and expected background in validation region for the data taking period of 2016. Yield in each bin is divided by the corresponding bin width.
The reconstructed m$_{tb}$ distributions in data and expected background in signal region for the data taking period of 2017. Yield in each bin is divided by the corresponding bin width.