Nuclear reactions of silver with 25.2 GeV $^{12}$C

Rudy, C.R. ; Porile, N.T. ;
Phys.Lett.B 59 (1975) 240-243, 1975.
Inspire Record 1389455 DOI 10.17182/hepdata.27780

Nuclear reactions induced in silver by 25.2 GeV 12C ions have been studied by the activation technique and compared with those induced by 300 GeV protons.

1 data table

Two sets of data were normalized to each other by requiring that the weighted mean of 15 cross section ratios for products in A = 66 - 90 region be equal to unity. SIG(C=PROTON) stands for the reacion with proton beam (PLAB=300 GeV) with the same final state.


Transverse-energy distributions at midrapidity in $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$--200~GeV and implications for particle-production models

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 89 (2014) 044905, 2014.
Inspire Record 1273625 DOI 10.17182/hepdata.63512

Measurements of the midrapidity transverse energy distribution, $d\Et/d\eta$, are presented for $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV and additionally for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 130 GeV. The $d\Et/d\eta$ distributions are first compared with the number of nucleon participants $N_{\rm part}$, number of binary collisions $N_{\rm coll}$, and number of constituent-quark participants $N_{qp}$ calculated from a Glauber model based on the nuclear geometry. For Au$+$Au, $\mean{d\Et/d\eta}/N_{\rm part}$ increases with $N_{\rm part}$, while $\mean{d\Et/d\eta}/N_{qp}$ is approximately constant for all three energies. This indicates that the two component ansatz, $dE_{T}/d\eta \propto (1-x) N_{\rm part}/2 + x N_{\rm coll}$, which has been used to represent $E_T$ distributions, is simply a proxy for $N_{qp}$, and that the $N_{\rm coll}$ term does not represent a hard-scattering component in $E_T$ distributions. The $dE_{T}/d\eta$ distributions of Au$+$Au and $d$$+$Au are then calculated from the measured $p$$+$$p$ $E_T$ distribution using two models that both reproduce the Au$+$Au data. However, while the number-of-constituent-quark-participant model agrees well with the $d$$+$Au data, the additive-quark model does not.

43 data tables

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

More…

The transverse asymmetry A(T') from quasielastic polarized He-3(pol.)(e(pol.),e') process and the neutron magnetic form factor.

Xu, W. ; Dutta, D. ; Xiong, F. ; et al.
Phys.Rev.Lett. 85 (2000) 2900-2904, 2000.
Inspire Record 531416 DOI 10.17182/hepdata.31474

We have measured the transverse asymmetry from inclusive scattering of longitudinally polarized electrons from polarized 3He nuclei at quasi-elastic kinematics in Hall A at Jefferson Lab with high statistical and systematic precision. The neutron magnetic form factor was extracted based on Faddeev calculations with an experimental uncertainty of less than 2 %.

1 data table

Ratio of neutron magnetic form-factor to dipole value.


Measurements at low energies of the polarization-transfer coefficient K(y, y') for the reaction H-3(p(pol.),n(pol.))He-3 at 0 degrees.

Wilburn, W.S. ; Gould, C.R. ; Hale, G.M. ; et al.
Few Body Syst. 24 (1998) 27-38, 1998.
Inspire Record 450457 DOI 10.17182/hepdata.38235

Measurements of the transverse polarization coefficient Kyy' for the reaction 3H(p,n)3He are reported for outgoing neutron energies of 1.94, 5.21, and 5.81 MeV. This reaction is important both as a source of polarized neutrons for nuclear physics experiments, and as a test of theoretical descriptions of the nuclear four-body system. Comparison is made to previous measurements, confirming the 3H(p,n)3He reaction can be used as a polarized neutron source with the polarization known to an accuracy of approximately 5%. Comparison to R-matrix theory suggests that the sign of the 3F3 phase-shift parameter is incorrect. Changing the sign of this parameter dramatically improves the agreement between theory and experiment.

1 data table

Polarized beam. The uncertainty in EKIN(C=P) reflects the energy width of the proton beam due to losses.


Measurements of the total cross-section for the scattering of polarized neutrons from polarized He-3

Keith, C.D. ; Gould, C.R. ; Haase, D.G. ; et al.
Phys.Rev.C 54 (1996) 477-486, 1996.
Inspire Record 433949 DOI 10.17182/hepdata.31350

Measurements of polarized-neutron–polarized−3He scattering are reported. The target consisted of cryogenically polarized solid He3, with thickness 0.04 atom/b and polarization ∼0.4. Polarized neutrons were produced via the H3(p→,n→)3He or H2(d→,n→)3He polarization-transfer reactions. The longitudinal and transverse total cross-section differences ΔσL and ΔσT were measured for incident neutron energies 2–8 MeV. The results are compared to phase-shift predictions based on four different analyses of n−3He scattering. The best agreement is obtained with a recent R-matrix analysis of A=4 scattering and reaction data, lending strong support to the He4 level scheme obtained in that analysis. Discrepancies with other phase-shift parametrizations of n−3He scattering exist, attributable in most instances to one or two particular partial waves. © 1996 The American Physical Society.

1 data table

SIG(C=L-...) and SIG(C=T-...) correspond to longitudinal and transverse polarization, respectively.