We report a high statistics measurement of Upsilon production with an 800 GeV/c proton beam on hydrogen and deuterium targets. The dominance of the gluon-gluon fusion process for Upsilon production at this energy implies that the cross section ratio, $\sigma (p + d \to \Upsilon) / 2\sigma (p + p\to \Upsilon)$, is sensitive to the gluon content in the neutron relative to that in the proton. Over the kinematic region 0 < x_F < 0.6, this ratio is found to be consistent with unity, in striking contrast to the behavior of the Drell-Yan cross section ratio $\sigma(p+d)_{DY}/2\sigma(p+p)_{DY}$. This result shows that the gluon distributions in the proton and neutron are very similar. The Upsilon production cross sections are also compared with the p+d and p+Cu cross sections from earlier measurements.
Differential cross section per nucleon as a function of Feynman X for UPSILON production on the DEUT target.
Differential cross section per nucleon as a function of Feynman X for UPSILON production on the P target.
Differential cross section per nucleon as a function of transverse momentum for UPSILON production on the DEUT target.
K+ meson production in pA (A = C, Cu, Au) collisions has been studied using the ANKE spectrometer at an internal target position of the COSY-Juelich accelerator. The complete momentum spectrum of kaons emitted at forward angles, theta < 12 degrees, has been measured for a beam energy of T(p)=1.0 GeV, far below the free NN threshold of 1.58 GeV. The spectrum does not follow a thermal distribution at low kaon momenta and the larger momenta reflect a high degree of collectivity in the target nucleus.
Double differential K+ production cross section for forward K+ angles < 12 degs. Statistical errors only.
The invariant cross section for K+ production. Statistical errors only.
Ratio of K+ production cross sections for CU/C and AU/C.
The production of Λ hypernuclei was studied in proton reactions with Bi nuclei and the lifetime of the produced heavy hypernuclei was measured by the observation of delayed fission using the recoil shadow method. The measurements were performed at 1.9 GeV proton energy whereas the background was determined at 1.0 GeV. From the distribution of the fission fragments in the shadow region the lifetime τ=[161±7( statist. )±14( system. )] ps was obtained and from a comparison of counting rates of prompt and delayed fission fragments the production cross section of hot Λ hypernuclei was determined to be (350±140) μ b.
No description provided.
The production of K^+ mesons in pA (A = D, C, Cu, Ag, Au) collisions has been investigated at the COoler SYnchrotron COSY-Julich for beam energies T_p = 1.0 - 2.3 GeV. Double differential inclusive pC cross sections at forward angles theta < 12 degrees as well as the target-mass dependence of the K^+ momentum spectra have been measured with the ANKE spectrometer. Far below the free NN threshold at T_{NN}=1.58 GeV the spectra reveal a high degree of collectivity in the target nucleus. From the target-mass dependence of the cross sections at higher energies, the repulsive in-medium potential of K^+ mesons can be deduced. Using pN cross-section parameterisations from literature and our measured pD data we derive a cross-section ratio of sigma(pn -> K^+ X) / sigma(pp -> K^+ X) ~ (3-4).
Double differential cross section for P C --> K+ X obtained in the 1.3 T mode. Errors do not include systematic uncertainties.
Double differential cross section for P C --> K+ X obtained in the 1.6 T mode. Errors do not include systematic uncertainties.
Cross section ratios CU/C and AU/C measured with the 1.3 T mode. Errors include statistical and systematic uncertainties.
A search for new massive particles decaying into a pair of Higgs bosons in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. Data were collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The search is performed for resonances with a mass between 0.8 and 3.5 TeV using events in which one Higgs boson decays into a bottom quark pair and the other decays into two W bosons that subsequently decay into a lepton, a neutrino, and a quark pair. The Higgs boson decays are reconstructed with techniques that identify final state quarks as substructure within boosted jets. The data are consistent with standard model expectations. Exclusion limits are placed on the product of the cross section and branching fraction for generic spin-0 and spin-2 massive resonances. The results are interpreted in the context of radion and bulk graviton production in models with a warped extra spatial dimension. These are the best results to date from searches for an HH resonance decaying to this final state, and they are comparable to the results from searches in other channels for resonances with masses below 1.5 TeV.
Observed and expected 95% CL upper limits on the product of the cross section and branching fraction to HH for a generic spin-0 (left) and spin-2 (right) boson X, as a function of mass. Example radion and bulk graviton predictions are also shown. The HH branching fraction is assumed to be 25 and 10%, respectively.
Observed and expected 95% CL upper limits on the product of the cross section and branching fraction to HH for a generic spin-0 (left) and spin-2 (right) boson X, as a function of mass. Example radion and bulk graviton predictions are also shown. The HH branching fraction is assumed to be 25 and 10%, respectively.
Production cross sections of $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) states decaying into $\mu^+\mu^-$ in proton-lead (pPb) collisions are reported using data collected by the CMS experiment at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV. A comparison is made with corresponding cross sections obtained with pp data measured at the same collision energy and scaled by the Pb nucleus mass number. The nuclear modification factor for $\Upsilon$(1S) is found to be $R_\mathrm{pPb}(\Upsilon(1S))$ = 0.806 $\pm$ 0.024 (stat) $\pm$ 0.059 (syst). Similar results for the excited states indicate a sequential suppression pattern, such that $R_\mathrm{pPb}(\Upsilon(1S))$$\gt$$R_\mathrm{pPb}(\Upsilon(2S))$$\gt$$R_\mathrm{pPb}(\Upsilon(3S))$. The suppression is much less pronounced in pPb than in PbPb collisions, and independent of transverse momentum $p_\mathrm{T}^\Upsilon$ and center-of-mass rapidity $y_\mathrm{CM}^\Upsilon$ of the individual $\Upsilon$ state in the studied range $p_\mathrm{T}^\Upsilon$$\lt$ 30 GeV$/c$ and $\vert y_\mathrm{CM}^\Upsilon\vert$$\lt$ 1.93. Models that incorporate sequential suppression of bottomonia in pPb collisions are in better agreement with the data than those which only assume initial-state modifications.
Differential cross section times dimuon branching fraction of Y(1S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.
Differential cross section times dimuon branching fraction of Y(2S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.
Differential cross section times dimuon branching fraction of Y(3S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.
A search for the production of events containing three W bosons predicted by the standard model is reported. The search is based on a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the CMS experiment at the CERN LHC and corresponding to a total integrated luminosity of 35.9 fb$^{-1}$. The search is performed in final states with three leptons (electrons or muons), or with two same-charge leptons plus two jets. The observed (expected) significance of the signal for W$^\pm$W$^\pm$W$^\mp$ production is 0.60 (1.78) standard deviations, and the ratio of the measured signal yield to that expected from the standard model is 0.34 $^{+0.62}_{-0.34}$. Limits are placed on three anomalous quartic gauge couplings and on the production of massive axionlike particles.
Lost-lepton and three-lepton background contributions.
Non-prompt lepton background estimates.
Summary of typical systematic uncertainties of estimated background contributions.
Differential cross sections for the Drell-Yan process, including Z boson production, using the dimuon decay channel are measured in proton-lead (pPb) collisions at a nucleon-nucleon centre-of-mass energy of 8.16 TeV. A data sample recorded with the CMS detector at the LHC is used, corresponding to an integrated luminosity of 173 nb$^{-1}$. The differential cross section as a function of the dimuon mass is measured in the range 15-600 GeV, for the first time in proton-nucleus collisions. It is also reported as a function of dimuon rapidity over the mass ranges 15-60 GeV and 60-120 GeV, and ratios for the p-going over the Pb-going beam directions are built. In both mass ranges, the differential cross sections as functions of the dimuon transverse momentum $p_\mathrm{T}$ and of a geometric variable $\phi^*$ are measured, where $\phi^*$ highly correlates with $p_\mathrm{T}$ but is determined with higher precision. In the Z mass region, the rapidity dependence of the data indicate a modification of the distribution of partons within a lead nucleus as compared to the proton case. The data are more precise than predictions based upon current models of parton distributions.
Differential fiducial cross section (without the acceptance correction) for the DY process measured in the muon channel, as a function of dimuon invariant mass. The quoted error is the quadratic sum of the statistical and systematic uncertainties. The global normalisation uncertainty of 3.5% is listed separately.
Differential fiducial cross section (without the acceptance correction) for the DY process measured in the muon channel, as a function of rapidity in the centre-of-mass frame for $15<m_{\mu\mu}<60$ GeV. The quoted error is the quadratic sum of the statistical and systematic uncertainties. The global normalisation uncertainty of 3.5% is listed separately.
Differential fiducial cross section (without the acceptance correction) for the DY process measured in the muon channel, as a function of rapidity in the centre-of-mass frame for $60<m_{\mu\mu}<120$ GeV. The quoted error is the quadratic sum of the statistical and systematic uncertainties. The global normalisation uncertainty of 3.5% is listed separately.
Signals consistent with the B$^+_\mathrm{c}$(2S) and B$^{*+}_\mathrm{c}$(2S) states are observed in proton-proton collisions at $\sqrt{s} =$ 13 TeV, in an event sample corresponding to an integrated luminosity of 140 fb$^{-1}$, collected by the CMS experiment during the 2016, 2017, and 2018 LHC running periods. These excited $\bar{\mathrm{b}}$c states are observed in the B$^+_\mathrm{c}\pi^+\pi^-$ invariant mass spectrum, with the ground state B$^+_\mathrm{c}$ reconstructed through its decay to J/$\psi\,\pi^+$. The two states are well resolved from each other and are observed with a significance exceeding five standard deviations. The mass of the B$^+_\mathrm{c}$(2S) meson is measured to be 6871.0 $\pm$ 1.2 (stat) $\pm$ 0.8 (syst) $\pm$ 0.8 (B$^+_\mathrm{c}$) MeV, where the last term corresponds to the uncertainty in the world-average B$^+_\mathrm{c}$ mass.
Observation of the Bc(2S) and Bc(2S)* states and measurement of the Bc(2S) mass.
Observation of the Bc(2S) and Bc(2S)* states and measurement of the Bc(2S) mass.
A study of the production of prompt J/$\psi$ mesons contained in jets in proton-proton collisions at $\sqrt{s} =$ 8 TeV is presented. The analysis is based on data corresponding to an integrated luminosity of 19.1 fb$^{-1}$ collected with the CMS detector at the LHC. For events with at least one observed jet, the angular separation between the J/$\psi$ meson and the jet is used to test whether the J/$\psi$ meson is part of the jet. The analysis shows that most prompt J/$\psi$ mesons with energy above 15 GeV and rapidity $|y|<$ 1 are contained in jets with pseudorapidity $|\eta_{\text{jet}}|$ $<$ 1. The differential distributions of the probability to have a J/$\psi$ meson contained in a jet as a function of jet energy for a fixed J/$\psi$ energy fraction are compared to a theoretical model using the fragmenting jet function approach. The data agree best with fragmenting jet function calculations that use a long-distance matrix element parameter set in which prompt J/$\psi$ mesons are predicted to be unpolarized. This technique demonstrates a new way to test predictions for prompt J/$\psi$ production using nonrelativistic quantum chromodynamics.
Experimental Xi values and FJF predictions for the four NRQCD terms using BCKL LDME parameters
Experimental Xi values and FJF predictions for the four NRQCD terms using BK LDME parameters
Experimental Xi values and FJF predictions for the four NRQCD terms using BCKL LDME parameters