We report on K*0 production at mid-rapidity in Au+Au and Cu+Cu collisions at \sqrt{s_{NN}} = 62.4 and 200 GeV collected by the Solenoid Tracker at RHIC (STAR) detector. The K*0 is reconstructed via the hadronic decays K*0 \to K+ pi- and \bar{K*0} \to K-pi+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c to 5 GeV/c. The center of mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum,
The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ =200 GeV after mixed-event background subtraction.
The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ =62.4 GeV after mixed-event background subtraction.
The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ =200 GeV after mixed-event background subtraction.
We report the first measurements of the kurtosis (\kappa), skewness (S) and variance (\sigma^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at \sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (\mu_B) between 200 - 20 MeV. Our measurements of the products \kappa \sigma^2 and S \sigma, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the \sqrt(s_NN) dependence of \kappa \sigma^2. From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for \mu_B below 200 MeV.
$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 0-5 percent central collisions at midrapidity (| y |< 0.5).
$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 30-40 percent central collisions at midrapidity (| y |< 0.5).
$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 70-80 percent central collisions at midrapidity (| y |< 0.5).
In the very heavy collision system Au197+197Au the K+ production process was studied as a function of impact parameter at 1 GeV/nucleon, a beam energy well below the free N-N threshold. The K+ multiplicity increases more than linearly with the number of participant nucleons and the K+/π+ ratio rises significantly when going from peripheral to central collisions. The measured K+ double differential cross section is enhanced by a factor of 6 compared to microscopic transport calculations if secondary processes (ΔN→KΛN and ΔΔ→KΛN) are ignored.
No description provided.
The total K+ cross section is determined by extrapolating and integrating the double differential cross section d2(sig)/d(p)/d(omega) over momentum and solid angle.
The production of neutral strange particles (K0, Λ) inp Ar,pXe and\(\bar p\)Xe collisions at 200 GeV is investigated in the NA5 experiment using a streamer chamber at the CERN SPS. Results are presented on inclusive cross sections, average multiplicities, and on rapidity and transverse momentum distributions of neutral strange particles.
No description provided.
No description provided.
No description provided.
Using non-tagged bremsstrahlung produced by a 130 MeV–20 μA c.w. electron beam of MAMI A quasi-free Compton scattering by the neutron was investigated via the 2 H( γ , γ 'n) 1 H reaction for lab scattering angles of θ γ = 90° and 135°. The energy spectrum and angular distribution of recoiling neutrons were measured via time of flight and a plastic-scintillator hodoscope, respectively. Double-differential cross sections for quasi-free scattering by the neutron were determined on an absolute scale by normalizing to the Compton cross section of the proton. By comparing the experimental double-differential cross sections with predictions the electric polarizability of the neutron was determined, leading to α n = (10.7 −10.7 +3.3 ) × 10 −4 fm 3 . Thus, the upper limit of α n is further reduced as compared to our previous result, but the lower limit is still consistent with zero.
No description provided.
Thick-target recoil properties of deep spallation and fragmentation products of the interaction of tantalum with 3.65 AGeV 12C-ions and 3.65 GeV protons have been studied. The kinematic parameters such as mean product kinetic energies and velocities of the remnant have been deduced from the data by means of the two-step vector velocity model of high-energy reactions. The results have also been used to test the applicability of the factorization hypothesis to the kinematic properties.
ASYM=F/B, WHERE F AND B ARE THE FRACTIONAL NUMBERS OF PRODUCT RECOILING INTO THE FORWARD AND BACKWARD CATCHER, RESPECTIVELY.
ASYM=F/B, WHERE F AND B ARE THE FRACTIONAL NUMBERS OF PRODUCT RECOILING INTO THE FORWARD AND BACKWARD CATCHER, RESPECTIVELY.
None
ASYM=F/B, WHERE F AND B ARE THE FRACTIONAL NUMBERS OF PRODUCT RECOILING INTO THE FORWARD AND BACKWARD CATCHER, RESPECTIVELY.
ASYM=F/B, WHERE F AND B ARE THE FRACTIONAL NUMBERS OF PRODUCT RECOILING INTO THE FORWARD AND BACKWARD CATCHER, RESPECTIVELY.
ASYM=F/B, WHERE F AND B ARE THE FRACTIONAL NUMBERS OF PRODUCT RECOILING INTO THE FORWARD AND BACKWARD CATCHER, RESPECTIVELY.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Nuclear reactions induced by 3·65 A GeV12C-ions and 3·65 GeV protons on target elements55Mn,59Co,nat Ni andnatCu were investigated by using the foil stack activation technique and Ge(Li) gamma-ray spectroscopy. Charge dispersions and mass-yield distributions of radioactive residues were obtained from the parametrization of measured spallation cross sections. Discussion of results from this and other radiochemical reactions of high-energy protons and12C-ions with complex nuclei is presented in terms of the concepts of limiting fragmentation and factorization.
No description provided.
No description provided.
No description provided.