None
No description provided.
No description provided.
No description provided.
The cross section e + e − → π + π − π o has been measured in the φ energy region and at three other energies (915, 990, 1076 MeV) chosen outside the ω and φ resonances. In the same experiment the energy position and the width of the φ resonance have been determined from the φ →K S o K L o channel. It is found that the magnitude and energy dependence of the experimental cross section are well described by coherent production of ω and φ in the whole energy range 770 to 1076 MeV. Our data clearly show an interference effect which corresponds to an opposite sign between the two products g γω g ω →3 π and g γφ g φ →3 π of the coupling constants.
EXPERIMENTAL CROSS SECTIONS - RADIATIVE CORRECTIONS CAN BE SIGNIFICANT.
Inclusive hadron production in muon-proton inelastic scattering has been measured for q2>0.5 (GeV/c)2 and 10<ν<135 GeV. The results are presented in the form of the transverse momentum distribution of charged hadrons and the hadron invariant structure function F(x′). Results are given for different regions of q2 and s.
No description provided.
No description provided.
No description provided.
We have studied K+π− elastic scattering in the reaction K+p→K+π−Δ++ at 12 GeVc and in the Kπ mass interval 800 to 1000 MeV. We have performed a partial-wave analysis in this Kπ mass region, dominated by the p-wave resonance K*(890), in order to obtain information about the s-wave amplitude. We have extrapolated the K+π− moments, the total cross section, and p-wave cross section to the pion pole. The p-wave cross section is close to the unitarity limit and can be described by a Breit-Wigner resonance form, with parameters M=896±2 MeV and Γ=47±3 MeV. We then perform an energy-independent phase-shift analysis of the extrapolated moments and total cross section using this Breit-Wigner form for the p wave and a previously determined small negative phase shift for the I=32s wave. For the I=12s-wave phase shift we find the so called "down" solution, which has a phase shift that rises slowly from 20° at M(Kπ)=800 MeV to 60° at M(Kπ)=1000 MeV. The energy dependence of this phase shift is well described by an effective range form, with a scattering length a01=−0.33±0.05 F. The so-called "up" solution is eliminated or has large χ2 everywhere except for two overlapping mass intervals at M(Kπ)=890 and 900 MeV. However, due to limited statistics, we expect two solutions for the s wave very near the mass where the p wave is resonant. We then perform an energy-dependent partial-wave analysis and find again no evidence for an s-wave resonance although, due to limited statistics, we could not exclude one at 890 MeV with Γ<7 MeV.
Extrapolation.
Extrapolation. Initial K+ PI- system in P-wave state.
A novel form of mass spectrometer has been used to measure the masses, widths, and cross sections of the η, ω, X0(958), and φ mesons near their respective thresholds in the reaction π−+p→missingmass+n. The incident momentum is varied in small steps through the threshold while neutrons of a given momentum are detected near zero degrees. The lower limit of the c.m. momentum P* at which measurements have been made ranges from about 50 MeV/c at the φ to about 30 MeV/c at the η. A somewhat low value for the ω mass, 782.3 ± 0.6 MeV, is found. The width of the X0 is < 1.9 MeV (95% confidence level). All four mesons show evidence of S-wave production, with values of σP* of 21.2 ± 1.8, 0.35 ± 0.03, and 0.29 ± 0.06 μb/(MeV/c) for the η, X0, and φ, respectively. A rapid rise in the ω cross section appears to be modified by a final-state interaction. The effect of this rise can probably be seen in some S11 pion-nucleon phase-shift solutions. Evidence is also presented of a sudden drop in the π+π− mass spectrum just above the threshold for the production of a K+K− pair. The paper includes a comprehensive discussion of the method and of the details of the spectrometer.
CROSS SECTIONS NEAR THRESHOLD.
An experiment has been performed to study the inclusive photoproduction of π 0 mesons. Photoproduced π 0 's were detected in a hodoscope consisting of 14 lead glass Cerenkov counters. To obtain the cross sections at a photon energy of 6 GeV we used the photon-difference method. Data are presented in terms of the Feynman variable x = q ‖ ∗ (√s/2) and the trnasverse momentum q⊥. We have measured four q ⊥ distributions at x = 0.2, 0.4, 0.6 and 0.8. The results dhow that the π 0 rate at small values of q ⊥ is smaller than the π± rate. The data can be fitted smoothly by a form A exp (− Bq ⊥ 2 ) with a value about 3.5 GeV −2 for the slope parameter B .
No description provided.
No description provided.
No description provided.
We report observation of the S* meson in the reaction π−+p→S*+n. The S* decays into ππ and KK and is seen most clearly in the 2π0 channel. A fit to the data gives a sheet-II pole at 987±7−i(24±7) MeV and a relative coupling gS→KKgS→ππ of 3.8 ± 1.0.
AT AROUND K+ K- THRESHOLD.
The final results of an experimental investigation of the reaction γ+n→p+π− performed with a deuterium bubble chamber at the 1 GeV Frascati electrosynchrotron are presented. Total and differential cross-sections on neutrons are extracted by means of the spectator model, the reliability of which has been checked by numerous tests and is extensively discussed. The problems of a possible isotensor component in the electromagnetic current, the time-reversal invariance of the electromagnetic interactions and the photoproduction of the Roper resonance are considered in detail.
No description provided.
No description provided.
No description provided.