In ultra-relativistic heavy ion collisions at the LHC, each nucleus acts a sources of high-energy real photons that can scatter off the opposing nucleus in ultra-peripheral photonuclear ($\gamma+A$) collisions. Hard scattering processes initiated by the photons in such collisions provide a novel method for probing nuclear parton distributions in a kinematic region not easily accessible to other measurements. ATLAS has measured production of dijet and multi-jet final states in ultra-peripheral Pb+Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV using a data set recorded in 2018 with an integrated luminosity of 1.72 $\text{nb}^{-1}$. Photonuclear final states are selected by requiring a rapidity gap in the photon direction; this selects events where one of the outgoing nuclei remains intact. Jets are reconstructed using the anti-$k_\text{t}$ algorithm with radius parameter, $R = 0.4$. Triple-differential cross-sections, unfolded for detector response, are measured and presented using two sets of kinematic variables. The first set consists of the total transverse momentum ($H_\text{T}$),rapidity, and mass of the jet system. The second set uses $H_\text{T}$ and particle-level nuclear and photon parton momentum fractions, $x_\text{A}$ and $z_{\gamma}$, respectively. The results are compared with leading-order (LO) perturbative QCD calculations of photonuclear jet production cross-sections, where all LO predictions using existing fits fall below the data in the shadowing region. More detailed theoretical comparisons will allow these results to strongly constrain nuclear parton distributions, and these data provide results from the LHC directly comparable to early physics results at the planned Electron-Ion Collider.
The fraction of photonuclear jet events passing the fiducial requirements in which the photon-emitting nucleus does not break up as a function of \zg. The systematic uncertainties are not symmetrized, and correlations in uncertainties are neglected for both the total systematic uncertainty and statistical uncertainty.
Fully unfolded triple-differential cross-sections as a function of $H_\text{T}$, $y_\text{jets}$, and $m_\text{jets}$. Systematic uncertainties are decomposed into symmetrized nuisance parameters, where parameters labelled "Corr" are fully correlated bin-to-bin, while parameters labelled "Uncorr" should be treated as un-correlated bin-to-bin. These cross-sections are not corrected for the effects of additional nuclear break-up. Values for the total fiducial cross-section in each bin are reported with full statistical and systematic uncertainties. Fractions of the total bin volume occupied by the fiducial region, fractions of the total cross-section in that bin satisfying fiducial requirements, and mean bin values for each axis variable are derived from Pythia 8 Monte Carlo and reported as well. For more details on these quantities, see Appendix B.
Fully unfolded triple-differential cross-sections as a function of $H_\text{T}$, $x_\text{A}$, and $z_{\gamma}$. Systematic uncertainties are decomposed into symmetrized nuisance parameters, where parameters labelled "Corr" are fully correlated bin-to-bin, while parameters labelled "Uncorr" should be treated as un-correlated bin-to-bin. These cross-sections are not corrected for the effects of additional nuclear break-up. Values for the total fiducial cross-section in each bin are reported with full statistical and systematic uncertainties. Fractions of the total bin volume occupied by the fiducial region, fractions of the total cross-section in that bin satisfying fiducial requirements, and mean bin values for each axis variable are derived from Pythia 8 Monte Carlo and reported as well. For more details on these quantities, see Appendix B.
The production cross sections of B$^0_\mathrm{s}$ and B$^+$ mesons are reported in proton-proton (pp) collisions recorded by the CMS experiment at the CERN LHC with a center-of-mass energy of 5.02 TeV. The data sample corresponds to an integrated luminosity of 302 pb$^{-1}$. The cross sections are based on measurements of the B$^0_\mathrm{s}$$\to$ J/$\psi(\mu^+\mu^-)\phi$(1020)(K$^+$K$^-$) and B$^+$$\to$ J/$\psi(\mu^+\mu^-)$K$^+$ decay channels. Results are presented in the transverse momentum ($p_\mathrm{T}$) range 7-50 GeV/$c$ and the rapidity interval $\lvert y \rvert$$\lt$ 2.4 for the B mesons. The measured $p_\mathrm{T}$-differential cross sections of B$^+$ and B$^0_\mathrm{s}$ in pp collisions are well described by fixed-order plus next-to-leading logarithm perturbative quantum chromodynamics calculations. Using previous PbPb collision measurements at the same nucleon-nucleon center-of-mass energy, the nuclear modification factors, $R_\mathrm{AA}$, of the B mesons are determined. For $p_\mathrm{T}$$\lt$ 10 GeV/$c$, both mesons are found to be suppressed in PbPb collisions (with $R_\mathrm{AA}$ values significantly below unity), with less suppression observed for the B$^0_\mathrm{s}$ mesons. In this $p_\mathrm{T}$ range, the $R_\mathrm{AA}$ values for the B$^+$ mesons are consistent with those for inclusive charged hadrons and D$^0$ mesons. Below 10 GeV/$c$, both B$^+$ and B$^0_\mathrm{s}$s are found to be less suppressed than either inclusive charged hadrons or D$^0$ mesons, with the B$^0_\mathrm{s}$$R_\mathrm{AA}$ value consistent with unity. The $R_\mathrm{AA}$ values found for the B$^+$ and B$^0_\mathrm{s}$ are compared to theoretical calculations, providing constraints on the mechanism of bottom quark energy loss and hadronization in the quark-gluon plasma, the hot and dense matter created in ultrarelativistic heavy ion collisions.
The B+ meson $p_{\rm{T}}$-dependent production cross section in pp collisions. The measurment was carried out inside a fiducial region respecting ($p_{\rm{T}}$<10 & 1.5<|y|<2.4) and ($p_{\rm{T}}$>10 & |y|<2.4). The luminosity is 302.3 pb^{-1}.
The Bs meson $p_{\rm{T}}$-dependent production cross section in pp collisions. The measurment was carried out inside a fiducial region respecting (pT<10 & 1.5<|y|<2.4) and ($p_{\rm{T}}$>10 & |y|<2.4). The luminosity is 302.3 pb^{-1}.
The B+ meson $p_{\rm{T}}$-dependent RAA in PpPp. The measurment was carried out inside a fiducial region respecting ($p_{\rm{T}}$<10 & 1.5<|y|<2.4) and ($p_{\rm{T}}$>10 & |y|<2.4).
The pseudorapidity ($\eta$) distributions of charged hadrons are measured using data collected at the highest ever nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 5.36 TeV for collisions of lead-lead ions. The data were recorded by the CMS experiment at the LHC in 2022 and correspond to an integrated luminosity of 0.30 $\pm$ 0.03 $\mu$b$^{-1}$. Using the CMS silicon pixel detector, the yields of primary charged hadrons produced in the range $\vert\eta\vert$$\lt$ 2.6 are reported. The evolution of the midrapidity particle density as a function of collision centrality is also reported. In the 5% most central collisions, the charged-hadron $\eta$ density in the range $\vert\eta\vert$ $\lt$ 0.5 is found to be 2032 $\pm$ 91 (syst), with negligible statistical uncertainty. This result is consistent with an extrapolation from nucleus-nucleus collision data at lower center-of-mass energies. Comparisons are made to various Monte Carlo event generators and to previous measurements of lead-lead and xenon-xenon collisions at similar collision energies. These new data detail the dependence of particle production on the collision energy, initial collision geometry, and the size of the colliding nuclei.
Charged-hadron $\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ distributions in PbPb collisions at 5.36 TeV for events in the 0--80%, 0--5% and 50--55% centrality class.
Charged-hadron $\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ in PbPb collisions at 5.36 TeV at midrapidity as a function of event centrality.
Charged-hadron $\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta/2A$ in PbPb collisions at 5.36 TeV at midrapidity as a function of event centrality.
This Letter presents a search for highly ionizing magnetic monopoles in 262$~\mu$b$^{-1}$ of ultraperipheral Pb+Pb collision data at $\sqrt{s_{_\textrm{NN}}}=5.36$ TeV collected by the ATLAS detector at the LHC. A new methodology that exploits the properties of clusters of hits reconstructed in the innermost silicon detector layers is introduced to study highly ionizing particles in heavy-ion data. No significant excess above the background, which is estimated using a data-driven technique, is observed. Using a nonperturbative semiclassical model, upper limits at 95% confidence level are set on the cross-section for pair production of monopoles with a single Dirac magnetic charge in the mass range of 20-150 GeV. The search significantly improves on the previous cross-section limits for production of low-mass monopoles in ultraperipheral Pb+Pb collisions.
Expected and observed cross-section upper limits computed using the CL$_{s}$ method for $|q_{m}| = 1 g_{\textrm{D}}$ and assuming FPA model
Measurements of fiducial and total inclusive cross sections for W and Z boson production are presented in proton-proton collisions at $\sqrt{s}$ = 5.02 and 13 TeV. Electron and muon decay modes ($ell$ = e or$\mu$) are studied in the data collected with the CMS detector in 2017, in dedicated runs with reduced instantaneous luminosity. The data sets correspond to integrated luminosities of 298 $\pm$ 6 pb$^{-1}$ at 5.02 TeV and 206 $\pm$ 5 pb$^{-1}$ at 13 TeV. Measured values of the products of the total inclusive cross sections and the branching fractions at 5.02 TeV are $\sigma$(pp $\to$ W+X)$\mathcal{B}$(W $\to$$\ell\nu$) = 7300 $\pm$ 10 (stat) $\pm$ 60 (syst) $\pm$ 140 (lumi) pb, and $\sigma$(pp $\to$ Z+X)$\mathcal{B}$(Z $\to$$\ell^+\ell^-$) = 669 $\pm$ 2 (stat) $\pm$ 6 (syst) $\pm$ 13 (lumi) pb for the dilepton invariant mass in the range of 60-120 GeV. The corresponding results at 13 TeV are 20480 $\pm$ 10 (stat) $\pm$ 170 (syst) $\pm$ 470 (lumi) pb and 1952 $\pm$ 4 (stat) $\pm$ 18 (syst) $\pm$ 45 (lumi) pb. The measured values agree with cross section calculations at next-to-next-to-leading-order in perturbative quantum chromodynamics. Fiducial and total inclusive cross sections, ratios of cross sections of W$^+$ and W$^-$ production as well as inclusive W and Z boson production, and ratios of these measurements at 5.02 and 13 TeV are reported.
Distributions of $m_T$ in the $W^{+}$ signal selection for e final states for the pp collisions at $\sqrt{s}=$ 5TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.
Distributions of $m_T$ in the $W^{+}$ signal selection for mu final states for the pp collisions at $\sqrt{s}=$ 5TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.
Distributions of $m_T$ in the $W^{+}$ signal selection for e final states for the pp collisions at $\sqrt{s}=$ 13TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.
High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the event-wise average transverse momentum ($P([p_{\mathrm{T}}])$). Distinguishing between contributions from fluctuations in the size of the nuclear overlap area (geometrical component) and other sources at fixed size (intrinsic component) presents a challenge. Here, these two components are distinguished by measuring the mean, variance, and skewness of $P([p_{\mathrm{T}}])$ in $^{208}$Pb+$^{208}$Pb and $^{129}$Xe+$^{129}$Xe collisions at $\sqrt{s_{{\mathrm{NN}}}} = 5.02$ and 5.44 TeV, respectively, using the ATLAS detector at the LHC. All observables show distinct changes in behavior in ultra-central collisions, where the geometrical variations are suppressed as the overlap area reaches its maximum. These results demonstrate a new technique to disentangle geometrical and intrinsic fluctuations, enabling constraints on initial condition and properties of the quark-gluon plasma, such as the speed of sound.
Data from Figure 1, panel a, $\left\langle[p_{T}]\right\rangle$ vs $N_{ch}$ for Pb+Pb collisions, 0.5 $ <p_{T}< $ 5 GeV/c, $|\eta|< $ 2.5
Data from Figure 1, panel b, $\left\langle[p_{T}]\right\rangle$ vs $N_{ch}$ for Pb+Pb collisions, 0.5 $ <p_{T}< $ 5 GeV/c, $|\eta|< $ 2.5
Data from Figure 1, panel b, $\left\langle[p_{T}]\right\rangle$ vs $N_{ch}$ for Xe+Xe collisions, 0.5 $ <p_{T}< $ 5 GeV/c, $|\eta|< $ 2.5
Measurements of (anti)deuteron and (anti)$^3$He production in the rapidity range $ |y| < $ 0.5 as a function of the transverse momentum and event multiplicity in Xe$-$Xe collisions at a center-of-mass energy per nucleon$-$nucleon pair of $\sqrt{s_{\rm NN}}$ = 5.44 TeV are presented. The coalescence parameters $B_2$ and $B_3$ are measured as a function of the transverse momentum per nucleon. The ratios between (anti)deuteron and (anti)$^3$He yields and those of (anti)protons and pions are reported as a function of the mean charged-particle multiplicity density, and compared with two implementations of the statistical hadronization model and with coalescence predictions. The elliptic flow of (anti)deuterons is measured for the first time in Xe$-$Xe collisions and shows features similar to those already observed in Pb$-$Pb collisions, i.e., the mass ordering at low transverse momentum and the meson$-$baryon grouping at intermediate transverse momentum. The production of nuclei is particularly sensitive to the chemical freeze-out temperature of the system created in the collision, which is extracted from a grand-canonical-ensemble-based thermal fit, performed for the first time including light nuclei along with light-flavor hadrons in Xe$-$Xe collisions. The extracted chemical freeze-out temperature $T_{\rm chem}$ = (154.2 $\pm$ 1.1) MeV in Xe$-$Xe collisions is similar to that observed in Pb$-$Pb collisions and close to the crossover temperature predicted by lattice quantum chromodynamics calculations.
Transverse momentum spectra of 3He nuclei measured in Xe--Xe collisions at centre-of-mass per nucleon-nucleon energy of 5.44 TeV, as shown in Fig. 3 (right panel).
Transverse momentum spectra of deuterons measured in Xe--Xe collisions at centre-of-mass per nucleon-nucleon energy of 5.44 TeV, as shown in Fig. 3 (left panel). Centrality class 0 to 10 percent.
Transverse momentum spectra of deuterons measured in Xe--Xe collisions at centre-of-mass per nucleon-nucleon energy of 5.44 TeV, as shown in Fig. 3 (left panel). Centrality class 10 to 20 percent.
First measurements of hadron(h)$-\Lambda$ azimuthal angular correlations in p$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV using the ALICE detector at the Large Hadron Collider are presented. These correlations are used to separate the production of associated $\Lambda$ baryons into three different kinematic regions, namely those produced in the direction of the trigger particle (near-side), those produced in the opposite direction (away-side), and those whose production is uncorrelated with the jet axis (underlying event). The per-trigger associated $\Lambda$ yields in these regions are extracted, along with the near- and away-side azimuthal peak widths, and the results are studied as a function of associated particle $p_{\rm T}$ and event multiplicity. Comparisons with the DPMJET event generator and previous measurements of the $\phi(1020)$ meson are also made. The final results indicate that strangeness production in the highest multiplicity p$-$Pb collisions is enhanced relative to low multiplicity collisions in both the jet-like regions and the underlying event. The production of $\Lambda$ relative to charged hadrons is also enhanced in the underlying event when compared to the jet-like regions. Additionally, the results hint that strange quark production in the away-side of the jet is modified by soft interactions with the underlying event.
Azimuthal distribution of the per-trigger h-$\Lambda$ yield with trigger transverse momentum between 4 and 8 GeV/c and associated transverse momentum between 1.5 and 2.5 GeV/c for 0-20% multiplicity class p-Pb collisions
Azimuthal distribution of the per-trigger h-$\Lambda$ yield with trigger transverse momentum between 4 and 8 GeV/c and associated transverse momentum between 1.5 and 2.5 GeV/c for 20-50% multiplicity class p-Pb collisions
Azimuthal distribution of the per-trigger h-$\Lambda$ yield with trigger transverse momentum between 4 and 8 GeV/c and associated transverse momentum between 1.5 and 2.5 GeV/c for 50-80% multiplicity class p-Pb collisions
The Large Hadron Collider at CERN, delivering proton-proton collisions at much higher energies and far higher luminosities than previous machines, has enabled a comprehensive programme of measurements of the standard model (SM) processes by the CMS experiment. These unprecedented capabilities facilitate precise measurements of the properties of a wide array of processes, the most fundamental being cross sections. The discovery of the Higgs boson and the measurement of its mass became the keystone of the SM. Knowledge of the mass of the Higgs boson allows precision comparisons of the predictions of the SM with the corresponding measurements. These measurements span the range from one of the most copious SM processes, the total inelastic cross section for proton-proton interactions, to the rarest ones, such as Higgs boson pair production. They cover the production of Higgs bosons, top quarks, single and multibosons, and hadronic jets. Associated parameters, such as coupling constants, are also measured. These cross section measurements can be pictured as a descending stairway, on which the lowest steps represent the rarest processes allowed by the SM, some never seen before.
Cross sections of selected high-energy processes measured by the CMS experiment. Measurements performed at different LHC pp collision energies are marked by unique symbols and the coloured bands indicate the combined statistical and systematic uncertainty of the measurement. Grey bands indicate the uncertainty of the corresponding SM theory predictions. Shaded hashed bars indicate the excluded cross section region for a production process with the measured 95% CL upper limit on the process indicated by the solid line of the same colour.
Summary of production cross section measurements involving top quarks. Measurements performed at different LHC pp collision energies are marked by unique symbols and the coloured bands indicate the combined statistical and systematic uncertainty of the measurement. Grey bands indicate the uncertainty of the corresponding SM theory predictions. Shaded hashed bars indicate the excluded cross section region for a production process with the measured 95% C.L. upper limit on the process indicated by the solid line of the same colour.
Summary of measurements of jet cross sections and electroweak processes in association with jets. Measurements performed at different LHC pp collision energies are marked by unique symbols and the coloured bands indicate the combined statistical and systematic uncertainty of the measurement. Grey bands indicate the uncertainty of the corresponding SM theory predictions. Shaded hashed bars indicate the excluded cross section region for a production process with the measured 95% C.L. upper limit on the process indicated by the solid line of the same colour. Versions of these plots in pdf format with links to the publications can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-23-004/.
A study of strange hadron production associated with hard scattering processes and with the underlying event is conducted to investigate the origin of the enhanced production of strange hadrons in small collision systems characterised by large charged-particle multiplicities. For this purpose, the production of the single-strange meson ${\rm K^0_S}$ and the double-strange baryon $\Xi^{\pm}$ is measured, in each event, in the azimuthal direction of the highest-$p_{\rm T}$ particle (``trigger" particle), related to hard scattering processes, and in the direction transverse to it in azimuth, associated with the underlying event, in pp collisions at $\sqrt{s}=5.02$ TeV and $\sqrt{s}=13$ TeV using the ALICE detector at the LHC. The per-trigger yields of ${\rm K^0_S}$ and $\Xi^{\pm}$ are dominated by the transverse-to-leading production (i.e., in the direction transverse to the trigger particle), whose contribution relative to the toward-leading production is observed to increase with the event charged-particle multiplicity. The transverse-to-leading and the toward-leading $\Xi^{\pm}$/${\rm K^0_S}$ yield ratios increase with the multiplicity of charged particles, suggesting that strangeness enhancement with multiplicity is associated with both hard scattering processes and the underlying event. The relative production of $\Xi^{\pm}$ with respect to ${\rm K^0_S}$ is higher in transverse-to-leading processes over the whole multiplicity interval covered by the measurement. The ${\rm K}^{0}_{\rm{S}}$ and $\Xi^{\pm}$ per-trigger yields and yield ratios are compared with predictions of three different phenomenological models, namely PYTHIA 8.2 with the Monash tune, PYTHIA 8.2 with ropes and EPOS LHC. The comparison shows that none of them can quantitatively describe either the transverse-to-leading or the toward-leading yields of ${\rm K}^{0}_{\rm{S}}$ and $\Xi^{\pm}$.
Yields of $\rm K^{0}_\rm{S}$ per trigger particle per unit $\Delta\eta\Delta\varphi$ area in pp collisions at $\sqrt{s}=13$ TeV, as a function of the $\rm K^{0}_\rm{S}$ $p_\rm{T}$. Trigger particles are charged particles with $p_\rm{T}>3$ GeV/c. The trigger-particle-$\rm K^{0}_\rm{S}$ correlation is integrated in the ranges $-1.2<\Delta\eta<1.2$ and $-\pi/2<\Delta\varphi<3/2\pi$.
Transverse-to-leading yields of $\rm K^{0}_\rm{S}$ per trigger particle per unit $\Delta\eta\Delta\varphi$ area in pp collisions at $\sqrt{s}=13$ TeV, as a function of the $\rm K^{0}_\rm{S}$ $p_\rm{T}$. Trigger particles are charged particles with $p_\rm{T}>3$ GeV/c. The trigger-particle-$\rm K^{0}_\rm{S}$ correlation is integrated in the ranges $0.86<|\Delta\eta|<1.2$ and $0.96<\Delta\varphi<1.8$.
Toward-leading yields of $\rm K^{0}_\rm{S}$ per trigger particle per unit $\Delta\eta\Delta\varphi$ area in pp collisions at $\sqrt{s}=13$ TeV, as a function of the $\rm K^{0}_\rm{S}$ $p_\rm{T}$. Trigger particles are charged particles with $p_\rm{T}>3$ GeV/c. The trigger-particle-$\rm K^{0}_\rm{S}$ correlation is integrated in the ranges $|\Delta\eta|<0.86$ and $|\Delta\varphi|<1.1$.