Date

Precision pion proton elastic differential cross sections at energies spanning the Delta resonance.

Pavan, M.M. ; Brack, J.T. ; Duncan, F. ; et al.
Phys.Rev.C 64 (2001) 064611, 2001.
Inspire Record 554203 DOI 10.17182/hepdata.31782

A precision measurement of absolute pi+p and pi-p elastic differential cross sections at incident pion laboratory kinetic energies from T_pi= 141.15 to 267.3 MeV is described. Data were obtained detecting the scattered pion and recoil proton in coincidence at 12 laboratory pion angles from 55 to 155 degrees for pi+p, and six angles from 60 to 155 degrees for pi-p. Single arm measurements were also obtained for pi+p energies up to 218.1 MeV, with the scattered pi+ detected at six angles from 20 to 70 degrees. A flat-walled, super-cooled liquid hydrogen target as well as solid CH2 targets were used. The data are characterized by small uncertainties, ~1-2% statistical and ~1-1.5% normalization. The reliability of the cross section results was ensured by carrying out the measurements under a variety of experimental conditions to identify and quantify the sources of instrumental uncertainty. Our lowest and highest energy data are consistent with overlapping results from TRIUMF and LAMPF. In general, the Virginia Polytechnic Institute SM95 partial wave analysis solution describes our data well, but the older Karlsruhe-Helsinki PWA solution KH80 does not.

18 data tables

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and single arm pion detection. There is an additional systematic error of 1.1 PCT for PI+ beams which is not included in the errors shown in the table.

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and two arm pion detection. There is an additional systematic error of 1.3 PCT for PI+ beams which is not included in the errors shown in the table.

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and two arm pion detection. There is an additional systematic error of 1.3 PCT (1.6 PCT) for PI+ (PI-) beams which is not included in the errors shown in the table.

More…

Precision neutral current asymmetry parameter measurements from the tau polarization at LEP.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 21 (2001) 1-21, 2001.
Inspire Record 554583 DOI 10.17182/hepdata.49765

Measurements of the tau lepton polarization and forward-backward polarization asymmetry near the Z resonance using the OPAL detector are described. The measurements are based on analyses of tau -> e nu_e nu_tau, tau -> mu nu_mu nu_tau, tau -> pi nu_tau, tau -> rho nu_tau and tau -> a1 nu_tau decays from a sample of 144810 e+e- -> tau+ tau- candidates corresponding to an integrated luminosity of 151 pb-1. Assuming that the tau lepton decays according to V-A theory, we measure the average tau polarization near Ecm = MZ to be = (-14.10 +/- 0.73 +/- 0.55)% and the tau polarization forward-backward asymmetry to be Afb = (-10.55 +/- 0.76 +/- 0.25)%, where the first error is statistical and the second systematic. Taking into account the small effects of the photon propagator, photon-Z interference and photonic radiative corrections, these results can be expressed in terms of the lepton neutral current asymmetry parameters: Atau = 0.1456 +/- 0.0076 +/- 0.0057, Ae = 0.1454 +/- 0.0108 +/- 0.0036. These measurements are consistent with the hypothesis of lepton universality and combine to give Al = 0.1455 +/- 0.0073. Within the context of the Standard Model this combined result corresponds to sin^2(theta)(lept,effective) = 0.23172 +/- 0.00092. Combing these results with those from the other OPAL neutral current measurements yields a value of sin^2(theta)(lept,effective) = 0.23211 +/- 0.00068.

1 data table

No description provided.


Measurement of the tau polarisation at LEP.

The ALEPH collaboration Heister, A. ; Schael, S. ; Barate, R. ; et al.
Eur.Phys.J.C 20 (2001) 401-430, 2001.
Inspire Record 555653 DOI 10.17182/hepdata.49751

The polarisation of $\tau$'s produced in Z decay is measured using 160 pb$^{-1}$ of data accumulated at LEP by the ALEPH detector between 1990 and 1995. The variation of the polarisation with polar angle yields the two parameters ${\cal A}_e = 0.1504 \pm 0.0068 $ and ${\cal A}_{\tau} = 0.1451 \pm 0.0059$ which are consistent with the hypothesis of $e$-$\tau$ universality. Assuming universality, the value ${\cal A}_{e{-}\tau} = 0.1474 \pm 0.0045$ is obtained from which the effective weak mixing angle $\sin^2 {\theta_{\mathrm{W}}^{\mathrm{eff}}} =0.23147 \pm 0.00057 $ is derived.

1 data table

No description provided.


Measurement of the Antilambda polarization in nu/mu charged current interactions in the NOMAD experiment.

The NOMAD collaboration Astier, P. ; Autiero, D. ; Baldisseri, A. ; et al.
Nucl.Phys.B 605 (2001) 3-14, 2001.
Inspire Record 554759 DOI 10.17182/hepdata.48928

We present a measurement of the polarization of Antilambda hyperons produced in nu_mu charged current interactions. The full data sample from the NOMAD experiment has been analyzed using the same V0 identification procedure and analysis method reported in a previous paper for the case of Lambda hyperons. The Antilambda polarization has been measured for the first time in a neutrino experiment. The polarization vector is found to be compatible with zero.

2 data tables

Lambdabar polarization in regions of Feynman X (XL).

Lambdabar polarization in regions of the Bjorken scaling variable X.


Measurement of the branching ratio for D/s- --> tau- anti-nu/tau decays.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 516 (2001) 236-248, 2001.
Inspire Record 553945 DOI 10.17182/hepdata.49836

Using about 3.9 million hadronic Z decays from e+e- collisions recorded by the OPAL detector at LEP at centre-of-mass energies near MZ the branching ratio for the decay D_s -> tau nu_tau has been measured to be (7.0 +/- 2.1(stat) +/- 2.0 (syst))%. This result can be used to derive the decay constant of the D_s meson: f(D_s) = 286 +/- 44(stat) +/- 41(syst) MeV.

1 data table

FORMFACTOR(NAME=FP,C=DECAY CONSTANT) is pseudoscalar meson decay constant.


Multiplicity of charged and neutral pions in deep-inelastic scattering of 27.5-GeV positrons on hydrogen.

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Eur.Phys.J.C 21 (2001) 599-606, 2001.
Inspire Record 554660 DOI 10.17182/hepdata.46860

Measurements of the individual multiplicities of pi+, pi- and pi0 produced in the deep-inelastic scattering of 27.5 GeV positrons on hydrogen are presented. The average charged pion multiplicity is the same as for neutral pions, up to approximately z= 0.7, where z is the fraction of the energy transferred in the scattering process carried by the pion. This result (below z= 0.7) is consistent with isospin invariance. The total energy fraction associated with charged and neutral pions is 0.51 +/- 0.01 (stat.) +/- 0.08 (syst.) and 0.26 +/- 0.01 (stat.) +/- 0.04 (syst.), respectively. For fixed z, the measured multiplicities depend on both the negative squared four momentum transfer Q^2 and the Bjorken variable x. The observed dependence on Q^2 agrees qualitatively with the expected behaviour based on NLO-QCD evolution, while the dependence on x is consistent with that of previous data after corrections have been made for the expected Q^2-dependence.

4 data tables

The measured PI0 multiplicity. Additional 9 PCT systematic error.

The measured multiplicity for charged pions, individually and the average. Additional 7 PCT systematic error.

The charged pion multiplicity as a function of x for four different z regions.

More…

Improved measurement of the probability for gluon splitting into b anti-b in Z0 decays.

The SLD collaboration Abe, Koya ; Abe, Kenji ; Abe, T. ; et al.
Phys.Lett.B 507 (2001) 61-69, 2001.
Inspire Record 552756 DOI 10.17182/hepdata.41701

We have measured gluon splitting into bottom quarks, g→b b ̄ , in hadronic Z 0 decays collected by SLD between 1996 and 1998. The analysis was performed by looking for secondary bottom production in 4-jet events of any primary flavor. 4-jet events were identified, and in each event a topological vertex-mass technique was applied to the two jets closest in angle in order to identify them as b or b ̄ jets. The upgraded CCD-based vertex detector gives very high B -tagging efficiency, especially for B hadrons with the low energies typical of this process. We measured the rate of g→b b ̄ production per hadronic event, g b b ̄ , to be (2.44±0.59(stat.)±0.34(syst.))×10 −3 .

1 data table

No description provided.


A New Upper Limit for the Tau-Neutrino Magnetic Moment

The DONUT collaboration Schwienhorst, R. ; Rusack, R. ; Ciampa, D. ; et al.
Phys.Lett.B 513 (2001) 23-29, 2001.
Inspire Record 552998 DOI 10.17182/hepdata.41688

Using a prompt neutrino beam in which a nu_tau component was identified for the first time, the nu_tau magnetic moment was measured based on a search for an anomalous increase in the number of neutrino-electron interactions. One such event was observed when 2.3 were expected from background processes, giving an upper 90% confidence limit of 3.9x10^-7 Bohr magnetons.

1 data table

CONST(NAME=BOHR MAGNETON) is Bohr magneton.


Precise measurement of the positive muon anomalous magnetic moment.

The Muon g-2 collaboration Brown, H.N. ; Bunce, G. ; Carey, R.M. ; et al.
Phys.Rev.Lett. 86 (2001) 2227-2231, 2001.
Inspire Record 552899 DOI 10.17182/hepdata.41719

A precise measurement of the anomalous g value, a_mu=(g-2)/2, for the positive muon has been made at the Brookhaven Alternating Gradient Synchrotron. The result a_mu^+=11 659 202(14)(6) X 10^{-10} (1.3 ppm) is in good agreement with previous measurements and has an error one third that of the combined previous data. The current theoretical value from the standard model is a_mu(SM)=11 659 159.6(6.7) X 10^{-10} (0.57 ppm) and a_mu(exp)-a_mu(SM)=43(16) X 10^{-10} in which a_mu(exp) is the world average experimental value.

1 data table

The anomalous G value is related to the gyromagnetic ratio by MOM(N=A_MU) =(G-2)/2.


Precise measurement of dimuon production cross-sections in nu/mu Fe and anti-nu/mu Fe deep inelastic scattering at the Tevatron.

The NuTeV collaboration Goncharov, M. ; Adams, T. ; Alton, A. ; et al.
Phys.Rev.D 64 (2001) 112006, 2001.
Inspire Record 553499 DOI 10.17182/hepdata.42034

We present measurements of the semi-inclusive cross sections for νμ- and ν¯μ-nucleon deep inelastic scattering interactions with two oppositely charged muons in the final state. These events dominantly arise from the production of a charm quark during the scattering process. The measurement was obtained from the analysis of 5102 νμ-induced and 1458 ν¯μ-induced events collected with the NuTeV detector exposed to a sign-selected beam at the Fermilab Tevatron. We also extract a cross-section measurement from a reanalysis of 5030 νμ-induced and 1060 ν¯μ-induced events collected from the exposure of the same detector to a quad-triplet beam by the Chicago Columbia Fermilab Rochester (CCFR) experiment. The results are combined to obtain the most statistically precise measurement of neutrino-induced dimuon production cross sections to date. These measurements should be of broad use to phenomenologists interested in the dynamics of charm production, the strangeness content of the nucleon, and the Cabibbo-Kobayashi-Maskawa matrix element Vcd.

12 data tables

NuTeV forward cross section of neutrino induced events at mean energy of 90.18 GeV.

NuTeV forward cross section of neutrino induced events at mean energy of 174.37 GeV.

NuTeV forward cross section of neutrino induced events at mean energy of 244.72 GeV.

More…