Searches for supersymmetry with the ATLAS detector using final states with two leptons and missing transverse momentum in sqrt{s} = 7 TeV proton-proton collisions

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 709 (2012) 137-157, 2012.
Inspire Record 943401 DOI 10.17182/hepdata.58447

Results of three searches are presented for the production of supersymmetric particles decaying into final states with missing transverse momentum and exactly two isolated leptons, e or mu. The analysis uses a data sample collected during the first half of 2011 that corresponds to a total integrated luminosity of 1 fb^-1 of sqrt{s} = 7 TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider. Opposite-sign and same-sign dilepton events are separately studied, with no deviations from the Standard Model expectation observed. Additionally, in opposite- sign events, a search is made for an excess of same-flavour over different-flavour lepton pairs. Effective production cross sections in excess of 9.9 fb for opposite-sign events containing supersymmetric particles with missing transverse momentum greater than 250 GeV are excluded at 95% CL. For same-sign events containing supersymmetric particles with missing transverse momentum greater than 100 GeV, effective production cross sections in excess of 14.8 fb are excluded at 95% CL. The latter limit is interpreted in a simplified weak gaugino production model excluding chargino masses up to 200 GeV.

18 data tables

The dilepton invariant mass distribution for same-sign dileptons.

The missing-mass ET distribution for same-sign dilepton events before any jet requirement.

The missing-mass ET distribution for same-sign dilepton events after requiring two high-pt jets.

More…

Properties of jets measured from tracks in proton-proton collisions at center-of-mass energy sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 84 (2011) 054001, 2011.
Inspire Record 919017 DOI 10.17182/hepdata.57743

Jets are identified and their properties studied in center-of-mass energy sqrt(s) = 7 TeV proton-proton collisions at the Large Hadron Collider using charged particles measured by the ATLAS inner detector. Events are selected using a minimum bias trigger, allowing jets at very low transverse momentum to be observed and their characteristics in the transition to high-momentum fully perturbative jets to be studied. Jets are reconstructed using the anti-kt algorithm applied to charged particles with two radius parameter choices, 0.4 and 0.6. An inclusive charged jet transverse momentum cross section measurement from 4 GeV to 100 GeV is shown for four ranges in rapidity extending to 1.9 and corrected to charged particle-level truth jets. The transverse momenta and longitudinal momentum fractions of charged particles within jets are measured, along with the charged particle multiplicity and the particle density as a function of radial distance from the jet axis. Comparison of the data with the theoretical models implemented in existing tunings of Monte Carlo event generators indicates reasonable overall agreement between data and Monte Carlo. These comparisons are sensitive to Monte Carlo parton showering, hadronization, and soft physics models.

104 data tables

Double differential cross sections for charged particle jets as a function of the jet PT in the |rapidity| range 0.0-0.5, shown separately for the two R values. The first (sys) errors is the correlated efficiency uncertainty and the second (sys) error is the correlated vetex splitting uncertainty. The third (sys) error is the quadratic sum of all the uncorrelated systematic uncertainties.

Double differential cross sections for charged particle jets as a function of the jet PT in the |rapidity| range 0.5-1.0, shown separately for the two R values. The first (sys) errors is the correlated efficiency uncertainty and the second (sys) error is the correlated vetex splitting uncertainty. The third (sys) error is the quadratic sum of all the uncorrelated systematic uncertainties.

Double differential cross sections for charged particle jets as a function of the jet PT in the |rapidity| range 1.0-1.5, shown separately for the two R values. The first (sys) errors is the correlated efficiency uncertainty and the second (sys) error is the correlated vetex splitting uncertainty. The third (sys) error is the quadratic sum of all the uncorrelated systematic uncertainties.

More…