Measurement of the forward - backward asymmetry in Z ---> b anti-b and Z ---> c anti-c

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 263 (1991) 325-336, 1991.
Inspire Record 316148 DOI 10.17182/hepdata.29386

From a sample of 150 000 hadronic Z decays collected with the ALEPH detector at LEP, events containing prompt leptons are used to measure the forward-backward asymmetries for the channels Z → b b and Z → c c , giving the results A FB b =0.126±0.028±0.012 and A FB c =0.064±0.039±0.030. These asymmetries correspond to the value of effective electroweak mixing angle at the Z mass sin 2 θ W ( m Z 2 ) = 0.2262±0.0053.

4 data tables

b asymmetry from high pt leptons.

b asymmetry from full pt range.

b asymmetry from full pt range.

More…

Measurement of charge asymmetry in hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 259 (1991) 377-388, 1991.
Inspire Record 314476 DOI 10.17182/hepdata.29453

A significant charge asymmetry is observed in the hadronic Z decays with the ALEPH detector at LEP. The asymmetry expressed in terms of the difference in momentum weighted charges in the two event hemispheres is measured to be < Q forward >−< Q backward >= −0.0084±0.0015 (stat.) ±0.0004 (exp. sys.). In the framework of the standard model this can be interpreted as a measurement of the effective electroweak mixing angle, sin 2 O w ( M z 2 =0.2300±0.0034 (stat.) ±0.0010 (exp. sys.) ±0.0038 (theor. sys.) or of the ratio of the vector to axual- vector coupling costants of the electron, g ve g Ae =+0.073±0.024.

2 data tables

No description provided.

No description provided.


Measurement of electroweak parameters from Z decays into Fermion pairs

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Z.Phys.C 48 (1990) 365-392, 1990.
Inspire Record 298414 DOI 10.17182/hepdata.47314

We report on the properties of theZ resonance from 62 500Z decays into fermion pairs collected with the ALEPH detector at LEP, the Large Electron-Positron storage ring at CERN. We findMZ=(91.193±0.016exp±0.030LEP) GeV, ΓZ=(2497±31) MeV, σhad0=(41.86±0.66)nb, and for the partial widths Γinv=(489±24) MeV, Γhad(1754±27) MeV, Γee=(85.0±1.6)MeV, Γμμ=(80.0±2.5) MeV, and Γττ=(81.3±2.5) MeV, all in good agreement with the Standard Model. Assuming lepton universality and using a lepton sample without distinction of the final state we measure Γu=(84.3±1.3) MeV. The forward-backward asymmetry in leptonic decays is used to determine the vector and axial-vector weak coupling constants of leptors,gv2(MZ2)=(0.12±0.12)×10−2 andgA2(MZ2)=0.2528±0.0040. The number of light neutrino species isNν=2.91±0.13; the electroweak mixing angle is sin2θW(MZ2)=0.2291±0.0040.

8 data tables

Hadronic cross section from the charged track selection trigger.

Hadronic cross section from the calorimeter selection trigger.

Averaged hadronic cross section.

More…

Analysis of Z0 couplings to charged leptons

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 247 (1990) 458-472, 1990.
Inspire Record 297139 DOI 10.17182/hepdata.29630

The couplings of the Z 0 to charged leptons are studied using measurements of the lepton pair cross sections and forward-backward asymmetries at centre of mass energies near to the mass of the Z 0 . The data are consistent with lepton universality. Using a parametrisation of the lepton pair differential cross section which assumes that the Z 0 has only vector and axial couplings to leptons, the charged leptonic partial decay width of the Z 0 is determined to be Г ol+ol− = 83.1±1.9 MeV and the square of the product of the effective axial vector and vector coupling constants of the Z 0 to charged leptons to be a ̌ 2 ol v ̌ 2 ol = 0.0039± 0.0083 , in agreement with the standard model. A parametrisation in the form of the improved Born approximation gives effective leptonic axial vector and vector coupling constants a ̌ 2 ol = 0.998±0.024 and v ̌ 2 ol = 0.0044±0.0083 . In the framework of the standard model, the values of the parameters ϱ z and sin 2 θ w are found to be 0.998±0.024 and 0.233 +0.045 −0.012 respectively. Using the relationship in the minimal standard model between ϱ z and sin 2 θ w , the results sin 2 θ SM w = 0.233 +0.007 −0.006 is obtained. Our previously published measurement of the ratio of the hadronic to the leptonic partial width of the Z 0 is update: R z = 21.72 +0.71 −0.65 .

6 data tables

Cross sections corrected for the effects of efficiency and kinematic cuts. Errors have systematic effects folded.

Acceptance corrected cross sections. Statistical errors only.

Acceptance corrected cross sections. Statistical errors only.

More…

Production Cross-section and Electroweak Asymmetry of $D^*$ and $D$ Mesons Produced in $e^+ e^-$ Annihilations at 29-{GeV}

Baringer, Philip S. ; Bylsma, B.G. ; DeBonte, R. ; et al.
Phys.Lett.B 206 (1988) 551-556, 1988.
Inspire Record 23360 DOI 10.17182/hepdata.6192

The production of D * and D mesons has been studied in e + e − annihilations at √s = 29GeV. The data, corresponding to an integrated luminosity of 300 pb −1 , were obtained using the HRS detector at PEP. The cross section is measured to be R (D 0 + D + ) = 2.40±0.35 and we determine the electroweak asymmetry to be −9.9 ± 2.7%, which corresponds to an axial vector coupling constant product g e g c = 0.26 ± 0.07.

11 data tables

No description provided.

No description provided.

No description provided.

More…

Energy Dependence of the Charge Asymmetry a ($T (\pi$), $\theta$) in $\pi d$ Elastic Scattering

Smith, G.R. ; Gill, D.R. ; Ottewell, D. ; et al.
Phys.Rev.C 38 (1988) 240-250, 1988.
Inspire Record 250814 DOI 10.17182/hepdata.26223

Angular distributions of charge asymmetry A(Tπ,θ), have been measured for πd elastic scattering. Data were obtained in the backward hemisphere for pion bombarding energies of 143, 180, 220, and 256 MeV. The results are compared with predictions employing different mass and width parameters for the delta isobars.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Asymmetry in the Angular Distribution of Inclusive $\Lambda$ Baryons From $e^+ e^-$ Annihilations at $\sqrt{s}=29$-{GeV}

Abachi, S. ; Baringer, Philip S. ; Bylsma, B.G. ; et al.
Phys.Lett.B 181 (1986) 403-406, 1986.
Inspire Record 18955 DOI 10.17182/hepdata.30215

A forward-backward asymmetry A , consistent with that expected from the γ − Z 0 interference term in the process e + e − → q q , is observed in the laboratory production angular distribution of high-momentum ∧ baryons. The data were collected with the High Resolution Spectrometer at PEP. The asymmetry for ∧ baryons with fractional energy z= 2E s greater than 0.3 is A = (−23± 8 plusmn ; 2)%.

2 data tables

No description provided.

Data read from graph.


New Results on the Reaction $e^+ e^- \to \mu^+ \mu^-$ at $\sqrt{s}=29$-{GeV}

Derrick, M. ; Fernandez, E. ; Fries, R. ; et al.
Phys.Rev.D 31 (1985) 2352, 1985.
Inspire Record 212767 DOI 10.17182/hepdata.3935

We have measured the process e+e−→μ+μ− at √s =29 GeV using the High Resolution Spectrometer at SLAC PEP. The forward-backward charge asymmetry is Aμμ=-(4.9±1.5±0.5)% based on 5057 events. A subsample of 3488 μ+μ− events in the angular range ‖cosθ‖<0.55 gives a cross-section ratio of Rμμ=0.990±0.017±0.030. The resulting couplings of the weak neutral current are gaegaμ=0.208±0.064± 0.021 and gvegvμ=0.027 ±0.051±0.089. The QED cutoff parameters are Λ+>170 GeV and Λ−>146 GeV at 95% C.L.

4 data tables

Corrected for acceptance and O(alpha**3) QED radiation. Numerical values taken from SUGANO-ANL-HEP-CP-84-90.

Forward-backward asymmetry based on fit to angular distribution. Result is given combined with earlier data from BENDER et al.

No description provided.

More…

Measurement of the Reaction $e^+ e^- \to \tau^+ \tau^-$ at $\sqrt{s}=29$-{GeV}

Gan, K.K. ; Beltrami, I. ; Bylsma, B.G. ; et al.
Phys.Lett.B 153 (1985) 116-120, 1985.
Inspire Record 212773 DOI 10.17182/hepdata.6571

The reaction e + e − → τ + τ − has been measured using the high resolution spectrometer at PEP. The angular distribution shows a forward-backward asymmetry of −(6.1±2.3±0.5)%, corresponding to an axial-vector coupling if g a τ g a e = 0.28 ±0.11± 0.03, in good agreement with the standard model of electroweak interactions. The measured cross section yields ifR ττ = 1.10± 0.03±0.04, consistent with QED and giving QED cutoff parameters of Λ + >92 GeV and Λ − >246 GeV at 95% C.L.

4 data tables

Comparison of total tau pair cross section with O(alpha**3) QED prediction.

Corrected for acceptance backgraound, and O(alpha**3) radiative effects.

Forward-backward asymmetry based on fit to angular distributions.

More…

Tests of QED at 29-GeV Center-Of-Mass Energy

Bender, D. ; Derrick, M. ; Fernandez, E. ; et al.
Phys.Rev.D 30 (1984) 515, 1984.
Inspire Record 199464 DOI 10.17182/hepdata.23593

During the initial data run with the High Resolution Spectrometer (HRS) at SLAC PEP, an integrated luminosity of 19.6 pb−1 at a center-of-mass energy of 29 GeV was accumulated. The data on Bhabha scattering and muon pair production are compared with the predictions of QED and the standard model of electroweak interactions. The measured forward-backward charge asymmetry in the angular distribution of muon pairs is -8.4%±4.3%. A comparison between the data and theoretical predictions places limits on alternative descriptions of leptons and their interactions. The existence of heavy electronlike or photonlike objects that alter the structure of the QED vertices or modify the propagator are studied in terms of the QED cutoff parameters. The Bhabha-scattering results give a lower limit on a massive photon and upper limits on the effective size of the electron of Λ+>121 GeV and Λ−>118 GeV at the 95% confidence level. Muon pair production yields Λ+>172 GeV and Λ−>172 GeV. If electrons have substructure, the magnitude and character of the couplings of the leptonic constituents affects the Bhabha-scattering angular distributions to such an extent that limits on the order of a TeV can be extracted on the effective interaction length of the components. For models in which the constituents interact with vector couplings of strength g24π∼1, the energy scale ΛVV for the contact interaction is measured to be greater than 1419.0 GeV at the 95% confidence level. We set limits on the production of supersymmetric scalar electrons through s-channel single-photon annihilation and t-channel inelastic scattering. Using events with two noncollinear electrons and no other charged or observed neutral particles in the final state, we see one event which is consistent with a simple supersymmetric model but which is also consistent with QED. This allows us to exclude the scalar electron to 95% confidence level in the mass range 1.8 to 14.2 GeV/c2.

3 data tables

Comparison of Bhabhas with QED.

Muon angular distributions.

Forward-backward asymmetry from full angular range.