We have measured inclusive distributions for charged particles in hadronic decays of the Z boson. The variables chosen for study were charged-particle multiplicity, scaled momentum, and momenta transverse to the sphericity axes. The distributions have been corrected for detector effects and are compared with data from e+e− annihilation at lower energies and with the predictions of several QCD-based models. The data are in reasonable agreement with expectations.
Mean corrected charged particle multiplicity.
Corrected charged particle X distributions. Errors are statistical and systematic combined.
Corrected charged particle PTIN distributions. Errors are statistical and systematic combined.
We report on properties of hadronic events from e + e − annihilation observed by the ALEPH detector at the large Electron Positron Collider at CERN. The center-of-mass energy was s =91.0−91.3 GeV . Measured distributions of the global event-shape variables sphericity, aplanarity, thrust and minor value, and of the inclusive variables x p , p ⊥ in , p ⊥ out and y are presented. We measure a mean charged multiplicity in hadronic events of 〈 N ch 〉=21.3±0.1 (statistical)±0.6 (systematic). The data are in good agreement with QCD-based models which use the leading-logarithm approximation, and are less well described by a model using O( α s 2 ) QCD.
NO RAD. CORR APPLIED.
The production of the meson resonances ϱ(770) (all three charge states), η(550), ω(783) andf2(1270) in\(\bar v\) Ne and ν Ne charged current interactions is investigated in a bubble chamber experiment with BEBC at CERN. Except for thef2, the main features of resonance production are reasonably well described by the Lund model, although the average resonance multiplicities are overestimated by the model by (67±30)%. The average multiplicities of all resonances, including thef2, are well reproduced by a semiempirical model, whose parameters were determined from hadron interaction data.
No description provided.
No description provided.
No description provided.
This paper reports cross-section measurements for the ρ0 and K*(890) vector mesons produced in e+e− annihilation at s=29 GeV. The data, which were taken with the High Resolution Spectrometer operating at the SLAC colliding-beam facility PEP, correspond to an integrated luminosity of 291 pb−1. The measured multiplicities for fractional momentum x>0.05 are Nρ0=0.79±0.04 and NK*0(890)=0.53±0.04. The measured fragmentation functions agree well with the predictions of the Lund model and when extrapolated to threshold, the corresponding total multiplicities are Nρ0=0.90±0.05 and NK*0(890)=0.59±0.05.
No description provided.
No description provided.
No description provided.
Multiplicity distributions of charged particles produced in non single-diffractive collisions between protons and antiprotons at centre of mass energies of 200 and 900 GeV are presented. The data were recorded in the UA5 streamer chambers at the CERN Collider, which was operated in a pulsed mode between the two energies. A new method to correct for acceptance limitations and inefficiencies based on the principle of maximum entropy has been used. Multiplicity distributions in full phase space and in intervals of pseudorapidity are presented in tabular form. The violation of KNO scaling in full phase space found by the UA5 group at an energy of 546 GeV is confirmed also at 200 and 900 GeV. The shape of the 900 GeV distribution in full phase space is narrower in the peak region than at 200 GeV but exhibits a pronounced high multiplicity tail. The negative binomial distribution fits data at 200 GeV in all pseudorapidity intervals and in small intervals at 900 GeV. In large intervals at 900 GeV, however, the negative binomial distribution. Fits to the partially coherent laser distribution are also presented as well as comparisons with predictions of the Dual Parton, the Fritiof and the Pythia models.
No description provided.
No description provided.
No description provided.
η production has been investigated by the Mark II collaboration at the SLAC e+e− storage ring PEP. η particles are reconstructed by their γγ decay mode. The η fragmentation function has been measured and found to be in good agreement with the Lund-model prediction. η′ production has been measured for the first time in high-energy e+e− annihilation. There is evidence at the 3σ level for Ds± decay into ηπ± and η′π±.
Numerical values supplied by G.Wormser.
Z = 0.0 point extrapolated using LUND fragmentation model.
Z = 0.0 point extrapolated using LUND fragmentation model.
None
Mean charged multiplicity for NSD events extrapolated to the full phase space.
Charged particle pseudorapidity density for NSD events at pseudorapidiy = 0.
Corrected charged particle multiplicity distribution for NSD events.
The charged particle multiplicity distributions for two-jet events ine+e− annihilation at 29 GeV have been measured using the High Resolution Spectrometer at PEP. A Poisson distribution describes the data for both the complete event and for the single jets. In addition, no correlation is observed between the multiplicities in the two jets of an event. For fixed values of the prong number of the complete event, the multiplicity sharing between the two jets is in good agreement with a binomial distribution. The rapidity gap distribution is exponential with a slope equal to the mean rapidity density. These observations, which are consistent with a picture of independent emission of single particles, are contrasted to the results from soft hadronic collisions and conclusions are drawn about the nature of clusters.
Charged Particle Multiplicity distributions for single jet and whole event from the two jet sample. The numerical values are given in the paper Derrick et al, PR D34 (86) 3304, and are coded in this database as (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1437> RED = 1437 </a>).
Single Jet Mean Multiplicities.
Total event charged multiplicities.
Cross-sections for diffractive particle production and pseudorapidity distributions of the decay products of diffractive states are presented. The data were obtained with the UA 5 streamer chamber detector at the CERNpp Collider operated in a new pulsed mode yieldingpp interactions at c.m. energies of 900 and 200 GeV. Data recorded with a special trigger designed to select a sample of events enriched in single-diffractive interactions clearly favour apt-limited fragmentation of diffractive states. The cross-section for single-diffractive particle production ϊ was found to be 7.8±0.5±1.1 mb at 900 GeV and 4.8±0.5±0.8 mb at 200 GeV (first error statistical, second systematic). From the pseudorapidity distribution of diffractive states we deduce the average number of charged particles to be 6.5±1.0 at 900 GeV and 4.1±1.1 at 200 GeV. Furthermore we report on our estimates for the cross-section of double-diffractive particle production at both Collider energies.
Single diffractive cross sections.
Average number of single diffractive charged particles.
Estimate of the double diffractive cross sections.
This paper presents the charged-particle multiplicity distributions for e+e− annihilation at √s =29 GeV measured in the High Resolution Spectrometer. The data, which correspond to an integrated luminosity of 185 pb−1, were obtained at the SLAC e+e− storage ring PEP. The techniques used to correct the observed prong numbers are discussed. The multiplicity distribution of the charged particles has a mean value 〈n〉=12.87±0.03±0.30, a dispersion D2=3.67±0.02±0.18, and an f2 moment of 0.60±0.02±0.18. Results are also presented for a two-jet sample selected with low sphericity and aplanarity. The charged-particle distributions are almost Poissonian and narrower than have been reported by other e+e− experiments in this energy range. The mean multiplicity increases with the event sphericity, and for the sample of threefold-symmetric three-jet events, a value of 〈n〉=16.3±0.3±0.7 is found. No correlation is observed between the multiplicities in the two hemispheres when the events are divided into two jets by a plane perpendicular to the thrust axis. This result is in contrast with the situation in soft hadronic collisions, where a strong forward-backward correlation is measured. For the single jets, a mean multiplicity of 6.43±0.02±0.15 and a dispersion value of D2=2.55±0.02±0.13 are found. These values give further support to the idea of independent jet fragmentation. The multiplicity distributions are well fit by the negative-binomial distribution. The semi-inclusive rapidity distributions are presented. Comparisons are made to the measurements of charged-particle multiplicities in hadron-hadron and lepton-nucleon collisions.
Charged particle multiplicity distribution for the Inclusive Data Sample.
Charged particle multiplicity distribution for the Two Jet Data Sample.
Properties of multiplicity distributions for Inclusive Data Sample.