We present a study of eegamma and mumugamma events using over 1 fb-1 of data collected with the D0 detector at the Fermilab Tevatron ppbar Collider at sqrt(s) = 1.96 TeV. Having observed 453 (515) candidates in the eegamma (mumugamma) final state, we measure the Zgamma production cross section for a photon with transverse energy ET > 7 GeV, separation between the photon and leptons Delta R(lgamma} > 0.7, and invariant mass of the di-lepton pair M(ll) > 30 GeV, to be 4.96 +/- 0.30(stat. + syst.) +/- 0.30(lumi.) pb, in agreement with the standard model prediction of 4.74 +/- 0.22 pb. This is the most precise Zgamma cross section measurement at a hadron collider. We set limits on anomalous trilinear Zgammagamma and ZZgamma gauge boson couplings of -0.085 < h(30)^(gamma) < 0.084, -0.0053 < h(40)^(gamma) < 0.0054 and -0.083 < h(30)^(Z) < 0.082, -0.0053 < h(40)^(Z) < 0.0054 at the 95% C.L. for the form-factor scale Lambda = 1.2 TeV.
Measured cross section for Z0 GAMMA production. Error contains both statistics and systematics (excluding luminosity uncertainty).
Inclusive jet production (e+e- -> e+e- +jet+X) is studied in collisions of quasi-real photons radiated by the LEP beams at e+e- centre-of-mass energies sqrt see from 189 to 209 GeV. Jets are reconstructed using the kp jet algorithm. The inclusive differential cross-section is measured as a function of the jet transverse momentum, ptjet, in the range 5 <ptjet < 40 GeV for pseudo-rapidities, etaj, in the range -1.5 < etaj < 1.5. The results are compared to predictions of perturbative QCD in next-to-leading order in the strong coupling constant.
Inclusive jet cross section for the absolute jet pseudorapidity < 1.0.
Inclusive jet cross section for the absolute jet pseudorapidity < 1.5.
We report on the observed differences in production rates of strange and multi-strange baryons in Au+Au collisions at sqrts = 200 GeV compared to pp interactions at the same energy. The strange baryon yields in Au+Au collisions, then scaled down by the number of participating nucleons, are enhanced relative to those measured in pp reactions. The enhancement observed increases with the strangeness content of the baryon, and increases for all strange baryons with collision centrality. The enhancement is qualitatively similar to that observed at lower collision energy sqrts =17.3 GeV. The previous observations are for the bulk production, while at intermediate pT, 1 < pT< 4 GeV/c, the strange baryons even exceed binary scaling from pp yields.
Midrapidity E(i) as a function of $<N_{part}>$ for $\Lambda$, $\bar{\Lambda}$ ($|y| < 1.0$), $\Xi^{-}$, $\bar{\Xi}^{+}$ ($|y| < 0.75$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature. Grand Canonical Model arrows(values in brackets), for $\Lambda$ E(2.6) and T(165 MeV) for $\bar{\Lambda}$ E(2.2) and T(170 MeV), for $\Xi$ E(10.7) and T(165 MeV), for anti-$\Xi$ E(7.5) and T(170 MeV).
Midrapidity E(i) as a function of $<N_{part}>$ for $\Omega^{-}+\bar{\Omega}^{+}$ ($|y| < 0.75$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature.
Midrapidity E(i) as a function of $<N_{part}>$ for inclusive $p$ ($|y| < 0.5$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature.
We study the processes $e^+ e^-\to K^+ K^- \pi^+\pi^-\gamma$, $K^+K^-\pi^0\pi^0\gamma$ and $K^+ K^- K^+ K^-\gamma$, where the photon is radiated from the initial state. About 34600, 4400 and 2300 fully reconstructed events, respectively, are selected from 232 \invfb of \babar data. The invariant mass of the hadronic final state defines the effective \epem center-of-mass energy, so that the $K^+ K^- \pi^+\pi^-\gamma$ data can be compared with direct measurements of the $e^+ e^-\to K^+K^- \pipi$ reaction/ no direct measurements exist for the $e^+ e^-\to K^+ K^- \pi^0\pi^0$ or $\epem\to K^+ K^- K^+ K^-$ reactions. Studying the structure of these events, we find contributions from a number of intermediate states, and we extract their cross sections where possible. In particular, we isolate the contribution from $e^+ e^-\to\phi(1020) f_{0}(980)$ and study its structure near threshold. In the charmonium region, we observe the $J/\psi$ in all three final states and several intermediate states, as well as the $\psi(2S)$ in some modes, and measure the corresponding branching fractions. We see no signal for the Y(4260) and obtain an upper limit of $\BR_{Y(4260)\to\phi\pi^+\pi^-}\cdot\Gamma^{Y}_{ee}<0.4 \ev$ at 90% C.L.
Measurement of the E+ E- --> K+ K- PI+ PI- cross section. Statistical errors only.
Measurement of the E+ E- --> K(892)0 K PI cross section. Statistical errors only.
Measurement of the E+ E- --> PHI PI+ PI- cross section. Statistical errors only.
We present a measurement of the shape of the boson rapidity distribution for $p\bar{p}\to Z / \gamma^* \to e^+e^- + X$ events at a center-of-mass energy of 1.96 TeV. The measurement is made for events with electron-positron mass 71 < M_ee < 111 GeV and uses 0.4 $fb^{-1}$ of data collected at the Fermilab Tevatron collider with the D0 detector. This measurement significantly reduces the uncertainties on the rapidity distribution in the forward region compared with previous measurements. Predictions of NNLO QCD are found to agree well with the data over the full rapidity range.
Normalized rapidity distribution.
Details of systematic errors.
We report the observation of $\e^+e^-\to \phi\eta$ near $\sqrt{s}$ = 10.58 GeV with 6.5 $\sigma$ significance in the $K^+K^-\gamma\gamma$ final state in a data sample of 224 $fb^{-1}$ collected by the BaBar experiment at the PEP-II $e^+e^-$ storage rings. We measure the restricted radiation-corrected cross section to be $\sigma(\e^+e^- \to \phi \eta) =$$2.1\pm 0.4 (\mathrm{stat})\pm 0.1(\mathrm{syst}) \mathrm{fb}$ within the range $|\cos\theta^*| < 0.8$, where $\theta^*$ is the center-of-mass polar angle of the $\phi$ meson. The $\phi$ meson is required to be in the invariant mass range of 1.008 $< m_{\phi} <$ 1.035 \gevcc. The radiation-corrected cross section in the full $\cos\theta^*$ range is extrapolated to be $2.9\pm 0.5 (\mathrm{stat})\pm 0.1(\mathrm{syst}) \mathrm{fb}$.
Radiation corrected cross section in the limited cos(theta) range and extrapolated to the full range assuming a 1+ cos(theta)**2 dependence.
We present a measurement of the cross section of the process $e^+e^-\to\pi^+pi^-\psi(2S)$ from threshold up to 8 GeV center-of-mass energy using events containing initial-state radiation, produced at the PEP-II $e^+e^-$ storage rings. The study is based on 298 fb$^{-1}$ of data recorded with the BaBar detector. A structure is observed in the cross-section not far above threshold, near 4.32 GeV. We also investigate the compatibility of this structure with the Y(4260) previously reported by this experiment.
The measured c.m. energy dependence of the cross section with statistical errors only.. Bins with no recorded data are shown as a 'dash'.
The inclusive production of charged hadrons in the collisions of quasi-real photons e+e- -> e+e- +X has been measured using the OPAL detector at LEP. The data were taken at e+e- centre-of-mass energies from 183 to 209 GeV. The differential cross-sections as a function of the transverse momentum and the pseudorapidity of the hadrons are compared to theoretical calculations of up to next-to-leading order (NLO) in the strong coupling constant alpha{s}. The data are also compared to a measurement by the L3 Collaboration, in which a large deviation from the NLO predictions is observed.
Differential inclusive charged hadron production cross section as a function of PT.
Differential inclusive charged hadron production cross section as a function of PT.
Differential inclusive charged hadron production cross section as a function of PT.
We present measurements of the total production rates and momentum distributions of the charmed baryon $\Lambda_c^+$ in $e^+e^- \to$ hadrons at a center-of-mass energy of 10.54 GeV and in $\Upsilon(4S)$ decays. In hadronic events at 10.54 GeV, charmed hadrons are almost exclusively leading particles in $e^+e^- \to c\bar{c}$ events, allowing direct studies of $c$-quark fragmentation. We measure a momentum distribution for $\Lambda_c^+$ baryons that differs significantly from those measured previously for charmed mesons. Comparing with a number of models, we find none that can describe the distribution completely. We measure an average scaled momentum of $\left< x_p \right> = 0.574\pm$0.009 and a total rate of $N_{\Lambda c}^{q\bar{q}} = 0.057\pm$0.002(exp.)$\pm$0.015(BF) $\Lambda_c^+$ per hadronic event, where the experimental error is much smaller than that due to the branching fraction into the reconstructed decay mode, $pK^-\pi^+$. In $\Upsilon (4S)$ decays we measure a total rate of $N_{\Lambda c}^{\Upsilon} = 0.091\pm$0.006(exp.)$\pm$0.024(BF) per $\Upsilon(4S)$ decay, and find a much softer momentum distribution than expected from B decays into a $\Lambda_c^+$ plus an antinucleon and one to three pions.
LAMBDA/C+ differential production rate per hadronic event for the continuum at cm energy 10.54 GeV.
The integrated number of LAMBDA/C+'s per hadronic event for the continuum at cm energy 10.54 GeV.
LAMBDA/C+ differential production rate per UPSILON(4S) decay at cm energy 10.58 GeV.
We present a study of events with Z bosons and jets produced at the Fermilab Tevatron Collider in ppbar collisions at a center of mass energy of 1.96 TeV. The data sample consists of nearly 14,000 Z/G* -> e+e- candidates corresponding to the integrated luminosity of 0.4 fb-1 collected using the D0 detector. Ratios of the Z/G* + >= n jet cross sections to the total inclusive Z/G* cross section have been measured for n = 1 to 4 jet events. Our measurements are found to be in good agreement with a next-to-leading order QCD calculation and with a tree-level QCD prediction with parton shower simulation and hadronization.
Ratio of the cross sections.
Number of observed events per 5 GeV bin for the >=`1Jet sample. Data read from plots.
Number of observed events per 5 GeV bin for the >=2Jet sample. Data read from plots.