Cross-sections and angular distributions for hadronic and lepton pair final states in e+e- collisions at a centre-of-mass energy near 189 GeV, measured with the OPAL detector at LEP, are presented and compared with the predictions of the Standard Model. The results are used to measure the energy dependence of the electromagnetic coupling constant alpha_em, and to place limits on new physics as described by four-fermion contact interactions or by the exchange of a new heavy particle such as a sneutrino in supersymmetric theories with R-parity violation. A search for the indirect effects of the gravitational interaction in extra dimensions on the mu+mu- and tau+tau- final states is also presented.
Hadronic cross section.
The cross sections for hadronic, and muon- and tau-pair production in the two sprime/s regions.
The cross sections for electron -pair production with various angular cuts.
We report on measurements of inclusive cross sections times branching fractions into electrons for W and Z bosons produced in ppbar collisions at sqrts=1.8 TeV.From an integrated luminosity of 84.5 inverse pb recorded in 1994--1995 using the D0 detector at the Fermilab Tevatron, we determine sigma(ppbar->W+X)B(W->e nu) = 2310 +- 10(stat) +- 50(syst) +- 100(lum) pb and sigma(ppbar->Z+X)B(Z->e e) = 221 +- 3(stat) +- 4(syst) +- 10(lum) pb. From these, we derive their Ratio R = 10.43 +- 0.15(stat) +- 0.20(syst) +- 0.10(NLO), B(W->e nu) = 0.1066 +- 0.0015(stat) +- 0.0021(syst) +- 0.0011(theory)+- 0.0011(NLO), and Gamma_W = 2.130 +- 0.030(stat) +- 0.041(syst) +- 0.022(theory) +- 0.021(NLO) GeV. We use the latter to set a 95% confidence level upper limit on the partial decay width of the W boson into non-standard model final states, Gamma_W^{inv}, of 0.168 GeV. Combining these results with those from the 1992--1993 data gives R = 10.54 +- 0.24, Gamma_W = 2.107 +- 0.054 GeV, and a 95% C.L. upper limit on Gamma_W^{inv} of 0.132 GeV. Using a sample with a luminosity of 505 inverse nb taken at sqrts=630 GeV, we measure sigma(ppbar->W+X)B(W->e nu) = 658 +- 67 pb.
Cross sections times branching ratios for W+- and Z0 production. The second DSYS error is due to the uncertainty in the luminosity.
Ratio of W to Z0 cross sections. The second systematic error is due to the uncertainty in the NLO electroweak radiative corrections.
Single W production is studied in the data recorded with the ALEPH detector at LEP at centre-of-mass energies between 161 and 183 GeV. The cross section is measured to be σ W =0.41±0.17(stat.)±0.04(syst.) pb at 183 GeV, consistent with the Standard Model expectation. Limits on non-standard WW γ couplings are deduced as −1.6<κ γ <1.5 (λ γ =0) and −1.6<λ γ <1.6 (κ γ =1) at 95% C.L. A search for effectively invisible decays of the W boson in W pair production is performed, leading to an upper limit on the branching ratio of 1.3% ( Γ inv =27 MeV ) at 95% C.L.
No description provided.
The helicity density matrix elements rho[00] of rho(770)+- and omega(782) mesons produced in Z decays have been measured using the OPAL detector at LEP. Over the measured meson energy range, the values are compatible with 1/3, corresponding to a statistical mix of helicity -1, 0 and +1 states. For the highest accessible scaled energy range 0.3 < x_E < 0.6, the measured rho[00] values of the rho(770)+- and the omega are 0.373 +- 0.052 and 0.142 +- 0.114, respectively. These results are compared to measurements of other vector mesons.
The errors are statistical and systematic unceratinties added in quadrature. The statistical errors (STAT=...) are also given.
The errors are statistical and systematic unceratinties added in quadrature. The statistical errors (STAT=...) are also given.
The total hadronic cross-section sigma_gg(W) for the interaction of real photons, gg->hadrons, is measured for gg centre-of-mass energies 10
No description provided.
No description provided.
We present measurements of the b-bbar production cross section and angular correlations using the D0 detector at the Fermilab Tevatron p-pbar Collider operating at sqrt(s) = 1.8 TeV. The b quark production cross section for |y(b)|<1.0 and p_T(b)>6 GeV/c is extracted from single muon and dimuon data samples. The results agree in shape with the next-to-leading order QCD calculation of heavy flavor production but are greater than the central values of these predictions. The angular correlations between b and bbar quarks, measured from the azimuthal opening angle between their decay muons, also agree in shape with the next-to-leading order QCD prediction.
No description provided.
The errors are combinations of statistical and systematic uncertainties.
The distribution of MU+ MU- azimuthal angle difference.
Evidence of anomalous WW and WZ production was sought in pbar{p} collisions at a center-of-mass energy of sqrt(s) = 1.8 TeV. The final states $WW (WZ) to mu-nu-jet-jet + X, WZ to mu-nu-e-e + X and WZ to e-nu-e-e + X were studied using a data sample corresponding to an integrated luminosity of approximately 90 pb-1. No evidence of anomalous diboson production was found. Limits were set on anomalous WWgamma and WWZ couplings and were combined with our previous results. The combined 95% confidence level anomalous coupling limits for Lambda=2 TeV are -0.25 LE Delta-kappa LE 0.39 (lambda=0) and -0.18 LE lambda LE 0.19 (Delta \kappa = 0), assuming the WWgamma couplings are equal to the WWZ couplings.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONST(NAME=SCALE)**2)**n. KAPPA_GZ means KAPPA_GAMMA = KAPPA_Z. LAMBDA_GZ means LAMBDA_GAMMA = LAMBDA_Z.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONST(NAME=SCALE)**2)**n.
values between 9.9-GeV**2 and 284-GeV**2.
Inclusive γ ∗ γ interactions to hadronic final states where one scattered electron or positron is detected in the electromagnetic calorimeters have been studied in the LEP 1 data taken by ALEPH from 1991 to 1995. The event sample has been used to measure the hadronic structure function of the photon F 2 γ in three bins with 〈 Q 2 〉 of 9.9, 20.7 and 284 GeV 2 .
The measured values of dsig/dx from the ECAL data in the Q**2 bin 35 to 3000 GeV**2 with a mean of 284 +- 49 GeV**2.
The measured values of dsig/dx from the LCAL data in the Q**2 bin 13 to 44 GeV**2 with a mean of 20.67 +- 016 GeV**2.
The measured values of dsig/dx from the LCAL data in the Q**2 bin 6 to 13 GeV**2 with a mean of 9.93 +- 0.04 GeV**2.
We report on a search for bottom squarks produced in pbarp collisions at sqrt(s) = 1.8 TeV using the D0 detector at Fermilab. Bottom squarks are assumed to be produced in pairs and to decay to the lightest supersymmetric particle (LSP) and a b quark with branching fraction of 100%. The LSP is assumed to be the lightest neutralino and stable. We set limits on the production cross section as a function of bottom squark mass and LSP mass.
It is assumed that the S-BQ decays intp BQ and LSP with a branching fraction of 100%.
We present a test of the flavour independence of the strong coupling constant for charm and bottom quarks with respect to light (uds) quarks, based on a hadronic event sample obtained with the OPAL detector at LEP. Five observables related to global event shapes were used to measure alpha_s in three flavour tagged samples (uds, c and b). The event shape distributions were fitted by Order(alpha_s**2) calculations of jet production taking into account mass effects for the c and b quarks. We find: = 0.997 +- 0.038(stat.) +- 0.030(syst.) +- 0.012(theory) and = 0.993 +- 0.008(stat.) +- 0.006(syst.) +- 0.011(theory) for the ratios alpha_s(charm)/alpha_s(uds) and alpha_s(b)/alpha_s(uds) respectively.
No description provided.