We present inclusive ¶ and K *0 (892) cross sections and Feynman x -spectra in K + p collisions at 250 GeV/ c . In the K + fragmentation region, x > 0.2, the ratio of ¶ to K *0 (892) is used to estimate the strangeness suppression factor λ , with the result γ =0.17 ± 0.02 (stat ± 0.01 (syst). We see no evidence for an energy dependence of λ in the CM energy range 7.8 ≤ s ≤21.7 GeV.
RESULTS AT 32 AND 70 GEV INCLUDED FOR COMPARISON.
RESULTS AT 32 AND 70 GEV INCLUDED FOR COMPARISON.
RESULTS AT 32 AND 70 GEV INCLUDED FOR COMPARISON.
Inclusive data are presented on ϱ 0 ,ϱ + and ω produced in k + p interactions at 250 GeV/ c , for ϱ + and ω for the first time in K + p experiment. In the forward CM hemisphere, the ϱ + , ϱ 0 and ω differential production rates are equal within errors, and remarkably similar to muon-inelastic scattering data on ϱ 0 and ω at 280 GeV/ c .
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
None
No description provided.
None
No description provided.
No description provided.
No description provided.
None
.
.
.
The data on invariant cross sections of deuterons emitted in the interactions of 3He with C, Cu and Pb targets at 4.9 GeV/nucleon are given. Inclusive spectra of deuterons produced in the reactions were measured from 20 deg to 150 deg in the laboratory frame with 10 deg step. Measurements were made on external 3He-beam at Dubna synchrophasotron
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Results are presented on π + p and K + p elastic scattering at 250 GeV/ c , the highest momentum so far reached for positive meson beams. The experiment (NA22) was performed with the european hybrid spectrometer. The π + p elastic cross section stays constant with energy while the K + p cross section increases.
No description provided.
No description provided.
ERRORS IN ELASTIC CROSS SECTIONS INCLUDE SYSTEMATIC ERRORS.