Date

Forward $K^*$+ (892) Production in $K^+ p \to \pi^+ K^0_S p$ at 12.7-{GeV}/$c$

Sacharidis, E.J. ; Blum, W. ; Dietl, H. ; et al.
Nucl.Phys.B 179 (1981) 9-32, 1981.
Inspire Record 154321 DOI 10.17182/hepdata.34347

We have measured 618 K + p → π + K S 0 p events at 12.7 GeV/ c incident lab momentum, mass range 790 ⩽ m π + K s 0 ⩽ 990 MeV and t range 0.01 ⩽ − t ⩽ 0.60 (GeV/ c ) 2 . The π + K S 0 mass spectrum is dominated by the K ∗+ (892) resonance and a Breit-Wigner fit yields a mass m = 893.5 ± 1.1 MeV and a width Γ = 33.2 ± 4.1 MeV which is much narrower than measured hitherto. The t distribution of K ∗+ (892) events shows a dip in the forward direction and an exponential fall off thereafter, consistent with dominance of helicity flip amplitudes. The spin density matrix is almost saturated by ρ 11 and ρ 1−1 which are very close to their maximum allowed value of 1 2 throughout the measured t range except in the very forward direction where ρ 00 and Re ρ 10 deviate from zero. Natural parity exchanges, therefore, dominate with unnatural parity exchanges being restricted to a small region in the forward direction. A Regge pole analysis of the differential cross sections of the present measurement in conjunction with previously measured total cross sections supports the f-coupled-pomeron hypothesis.

3 data tables match query

SUBTRACTED BACKGROUND IS PHASE SPACE.

SUBTRACTED BACKGROUND IS AN INCOHERENT S-WAVE WITH EXPONENTIAL T-DEPENDENCE WITH SLOPE OF 6 GEV**-2.

Axis error includes +- 15/15 contribution.


Forward A2+ in Two-dimensions Production in $\pi^+ p \to K^+ \bar{K}(s$)0 $p$ at 12.7-{GeV}/$c$

Hyams, B. ; Jones, C. ; Weilhammer, P. ; et al.
Nucl.Phys.B 146 (1978) 303-326, 1978.
Inspire Record 132236 DOI 10.17182/hepdata.34849

Approximately 350 A 2 + events have been observed in the reaction π + p → K + K S 0 p ( K S 0 → π + π − ) at an incident π + laboratory momentum of 12.7 GeV/ c . The events are distributed over a range of four-momentum transfer squared 0.01 ⩽ − t ⩽ 0.60 (GeV/ c ) 2 and K + K S 0 mass 1.11 ⩽ m K + K S 0 ⩽ 1.51 GeV . A Breit-Wigner fit to the mass spectrum yields a mass for the A 2 + , m A 2 + = 1.324 ± 0.005 GeV, and a width Γ 0 = 0.110 ± 0.018 GeV. We find a cross section σ ( π + p → A 2 + p) = 1.71 ± 0.30 μb referring to the above-mentioned mass and t range and A 2 + → K + K S O with K S 0 → π + π − . The spin-space density matrix in the Gottfried-Jackson frame is practically saturated by ϱ 11 ⋍ ϱ 1−1 = 1 2 suggesting natural parity exchanges only. There is a forward dip in the angular distribution consistent with dominance of s -channel net helicity flip amplitudes and ϱ and f Regge exchanges suffice to describe adequately our differential cross sections.

5 data tables match query

SUBTRACTED BACKGROUND IS PHASE SPACE. FITTED D(SIG)/DT SLOPE IS 9.5 +- 0.9 GEV**-2.

SUBTRACTED BACKGROUND IS AN S-WAVE WITH SLOPE OF 8 GEV**-2. FITTED D(SIG)/DT SLOPE IS 6.9 +- 0.6 GEV**-2.

FROM D(SIG)/DT. ERROR INCLUDES 15 PCT SCALE ERROR ADDED QUADRATICALLY.

More…

The production of nucleon resonances in proton proton collisions at high energy and large momentum transfers

Allaby, J.V. ; Binon, F. ; Diddens, A.N. ; et al.
Phys.Lett.B 28 (1968) 229-232, 1968.
Inspire Record 56834 DOI 10.17182/hepdata.29196

Experimental results are presented on the excitation of the nucleon isobars N ∗ (1518) and N ∗ (1688) in proton-proton collisions at an incident momentum of 19.2 GeV/ c and in the range of four-momentum squared 0.6 ⩽7 z . sfnc ; t | ⩽ 5.8 GeV 2 .

0 data tables match query

K- p Elastic Scattering Between 1094-MeV/c and 1377-MeV/c

Barber, P.C. ; Broome, T.A. ; Duff, B.G. ; et al.
Nucl.Phys.B 92 (1975) 391-403, 1975.
Inspire Record 98421 DOI 10.17182/hepdata.32031

Differential cross sections for elastic scattering of negative kaons on protons are presented for 13 incident laboratory momenta between 1094 MeV/c and 1377 MeV/c. The data show the characteristic forward diffraction-like peak and backward dip and are adequately described in shape by certain published partial-wave analyses of the N system.

3 data tables match query

No description provided.

No description provided.

No description provided.


K- p Elastic Scattering Between 1.73-GeV/c and 2.47-GeV/c

Barber, P.C. ; Broome, T.A. ; Duff, B.G. ; et al.
Nucl.Phys.B 102 (1976) 365-380, 1976.
Inspire Record 2160 DOI 10.17182/hepdata.36077

Differential cross sections for the elastic scattering of negative kaons on protons are presented for 19 momenta between 1.732 GeV/ c and 2.466 GeV/ c . The general features of the cross sections are discussed.

23 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurements of k+ p elastic scattering differential cross sections in the incident momentum range 1368 to 2259 mev/c

Barber, P.C. ; Broome, T.A. ; Busza, W. ; et al.
Nucl.Phys.B 61 (1973) 125-154, 1973.
Inspire Record 83885 DOI 10.17182/hepdata.32486

Measurements of complete angular distributions of elastic K + p scattering at closely spaced incident momenta from 1368 to 2259 MeV/ c are presented and discussed. A PDP-8 computer controlled system of scintillation counters and core-readout wire spark chambers was used for the detection of elastic events. Diffractive behaviour is already present at the lowest measured momentum and becomes more prominent as the incident momentum increases. An expansion of the angular distributions in terms of Legendre polynomials shows no marked structure of the expansion coefficients as functions of the incident momentum. Our measurements can be adequately described by a number of existing phase shift solutions within 5% of their published values. Also Regge pole extrapolations represent our data satisfactorily.

7 data tables match query

No description provided.

No description provided.

No description provided.

More…

Discontinuous behaviour in large angle proton-proton elastic scattering at high energies

Allaby, J.V. ; Cocconi, G. ; Diddens, A.N. ; et al.
Phys.Lett.B 25 (1967) 156-159, 1967.
Inspire Record 1389227 DOI 10.17182/hepdata.754

Measurements of elastic proton-proton differential cross sections for angles between 65° and 90° c.m.s. have been made at 8, 9, 10, 11, 14, 15 and 21 GeV/c. The shape of the angular distribution is found to change suddenly between 8 and 11 GeV/c. An interpretation of this discontinuous behaviour in terms of the reactive effects of baryon-antibaryon pair production is proposed.

0 data tables match query

Measurement of $J/\psi$ at forward and backward rapidity in $p+p$, $p+A$l, $p+A$u, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200~{\rm GeV}$

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 102 (2020) 014902, 2020.
Inspire Record 1762446 DOI 10.17182/hepdata.98626

Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.

1 data table match query

J/psi nuclear modification in p+Au collisions as a function of nuclear thickness (T_A). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.


J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 84 (2011) 054912, 2011.
Inspire Record 894560 DOI 10.17182/hepdata.100086

Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.

6 data tables match query

J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

Version 2
J/psi Production in sqrt (s_NN)= 200 GeV Cu+Cu Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, Christine Angela ; et al.
Phys.Rev.Lett. 101 (2008) 122301, 2008.
Inspire Record 776624 DOI 10.17182/hepdata.57327

Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.

12 data tables match query

J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 20-40 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 40-60 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…