Date

Collaboration

$\Upsilon$ production and nuclear modification at forward rapidity in Pb-Pb collisions at $\mathbf{\sqrt{\textit{s}_{\textbf{NN}}}=5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 822 (2021) 136579, 2021.
Inspire Record 1829413 DOI 10.17182/hepdata.114190

The production of $\Upsilon$ mesons in Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}$ = 5 TeV is measured with the muon spectrometer of the ALICE detector at the LHC. The yields as well as the nuclear modification factors are determined in the forward rapidity region $2.5<y<4.0$, as a function of rapidity, transverse momentum and collision centrality. The results show that the production of the $\Upsilon$(1S) meson is suppressed by a factor of about three with respect to the production in proton-proton collisions. For the first time, a significant signal for the $\Upsilon$(2S) meson is observed at forward rapidity, indicating a suppression stronger by about a factor 2-3 with respect to the ground state. The measurements are compared with transport, hydrodynamic, comover and statistical hadronisation model calculations.

14 data tables

Rapidity-differential yield of $\Upsilon(1\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

Rapidity-differential yield of $\Upsilon(2\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

$p_{\mathrm{T}}$-differential yield of $\Upsilon(1\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

More…

Observation of nuclear modifications in W$^\pm$ boson production in pPb collisions at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 800 (2020) 135048, 2020.
Inspire Record 1733223 DOI 10.17182/hepdata.88284

The production of W$^\pm$ bosons is studied in proton-lead (pPb) collisions at a nucleon-nucleon centre-of-mass energy of $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV. Measurements are performed in the W$^\pm$ $\to$ $\mu^\pm\nu_\mu$ channel using a data sample corresponding to an integrated luminosity of 173.4 $\pm$ 8.7 nb$^{-1}$, collected by the CMS Collaboration at the LHC. The number of positively and negatively charged W bosons is determined separately in the muon pseudorapidity region in the laboratory frame $|\eta^\mu_\mathrm{lab}|$ $<$ 2.4 and transverse momentum $p_\mathrm{T}^\mu$ $>$ 25 GeV/$c$. The W$^\pm$ boson differential cross sections, muon charge asymmetry, and the ratios of W$^\pm$ boson yields for the proton-going over the Pb-going beam directions are reported as a function of the muon pseudorapidity in the nucleon-nucleon centre-of-mass frame. The measurements are compared to the predictions from theoretical calculations based on parton distribution functions (PDFs) at next-to-leading-order. The results favour PDF calculations that include nuclear modifications and provide constraints on the nuclear PDF global fits.

7 data tables

Muon charge asymmetry, $(N_{\mu}^{+} - N_{\mu}^{-})/(N_{\mu}^{+} + N_{\mu}^{-})$, as a function of the muon pseudorapidity in the centre-of-mass frame.

Differential production cross sections for $\textrm{pPb} \to W^{+} + X \to \mu^{+} \nu + X$ for positively charged muons of $p_T$ larger than 25 GeV$/c$, in nanobarns, as a function of the muon pseudorapidity in the centre-of-mass frame. The global normalisation uncertainty of 3.5% is listed separately.

Differential production cross sections for $\textrm{pPb} \to W^{-} + X \to \mu^{-} \bar{\nu} + X$ for negatively charged muons of $p_T$ larger than 25 GeV$/c$, in nanobarns, as a function of the muon pseudorapidity in the centre-of-mass frame. The global normalisation uncertainty of 3.5% is listed separately.

More…

Suppression of excited Upsilon states relative to the ground state in PbPb collisions at sqrt(sNN) = 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 120 (2018) 142301, 2018.
Inspire Record 1605750 DOI 10.17182/hepdata.79055

The relative yields of $\Upsilon$ mesons produced in pp and PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV and reconstructed via the dimuon decay channel are measured using data collected by the CMS experiment. Double ratios are formed by comparing the yields of the excited states, $\Upsilon$(2S) and $\Upsilon$(3S), to the ground state, $\Upsilon$(1S), in both PbPb and pp collisions at the same center-of-mass energy. The double ratios, [$\Upsilon$(nS)/$\Upsilon$(1S)]$_\mathrm{PbPb}$ / [$\Upsilon$(nS)/$\Upsilon$(1S)]$_\mathrm{pp}$, are measured to be 0.308 $\pm$ 0.055 (stat) $\pm$ 0.019 (syst) for the $\Upsilon$(2S) and less than 0.26 at 95% confidence level for the $\Upsilon$(3S). No significant $\Upsilon$(3S) signal is found in the PbPb data. The double ratios are studied as a function of collision centrality, as well as dimuon transverse momentum and rapidity. No significant dependencies are observed.

5 data tables

Double ratio of measured yields, $(N_{\varUpsilon(2S)} / N_{\varUpsilon(1S)})_{\mathrm{PbPb}} / (N_{\varUpsilon(2S)} / N_{\varUpsilon(1S)})_{pp}$, as a function of centrality, for upsilon $|y|<2.4$ and $p_T<30$GeV, and $p_{T}^{\mu}>4$GeV.

Double ratio of measured yields, $(N_{\varUpsilon(2S)} / N_{\varUpsilon(1S)})_{\mathrm{PbPb}} / (N_{\varUpsilon(2S)} / N_{\varUpsilon(1S)})_{pp}$, as a function of pT, for upsilon $|y|<2.4$, $p_{T}^{\mu}>4$GeV, and 0--100\% event centrality.

Double ratio of measured yields, $(N_{\varUpsilon(2S)} / N_{\varUpsilon(1S)})_{\mathrm{PbPb}} / (N_{\varUpsilon(2S)} / N_{\varUpsilon(1S)})_{pp}$, as a function of rapidity, for upsilon $pT<30$GeV, $p_{T}^{\mu}>4$GeV, and 0--100\% event centrality.

More…

Relative modification of prompt psi(2S) and J/psi yields from pp to PbPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 118 (2017) 162301, 2017.
Inspire Record 1495840 DOI 10.17182/hepdata.77102

The relative modification of the prompt psi(2S) and J/psi yields from pp to PbPb collisions, at the center of mass energy of 5.02 TeV per nucleon pair, is presented. The analysis is based on pp and PbPb data samples collected by the CMS experiment at the LHC in 2015, corresponding to integrated luminosities of 28.0 inverse picobarns and 464 inverse microbarns, respectively. The double ratio of measured yields of prompt charmonia reconstructed through their decays into muon pairs, (N[psi(2S)]/N[J/psi])[PbPb] / (N[psi(2S)]/N[J/psi])[pp], is determined as a function of PbPb collision centrality and charmonium transverse momentum pt, in two kinematic intervals: abs(y) < 1.6 covering 6.5 < pt < 30 GeV/c and 1.6 < abs(y) < 2.4 covering 3 < pt < 30 GeV/c. The centrality-integrated double ratios are 0.36 +/- 0.08 (stat) +/-0.05 (syst) in the first interval and 0.24 +/- 0.22 (stat) +/- 0.09 (syst) in the second. The double ratio is lower than unity in all the measured bins, suggesting that the psi(2S) yield is more suppressed than the J/psi yield in the explored phase space.

10 data tables

Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of pT, for the midrapidity analysis bin.

95% CL intervals on the double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of pT, for the midrapidity analysis bin.

Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of pT, for the forward rapidity analysis bin.

More…