We present measurements of the differential cross section dsigma/dpT_gamma for the inclusive production of a photon in association with a b-quark jet for photons with rapidities |y_gamma|< 1.0 and 30<pT_gamma <300 GeV, as well as for photons with 1.5<|y_gamma|< 2.5 and 30< pT_gamma <200 GeV, where pT_gamma is the photon transverse momentum. The b-quark jets are required to have pT>15 GeV and rapidity |y_jet| < 1.5. The results are based on data corresponding to an integrated luminosity of 8.7 fb^-1, recorded with the D0 detector at the Fermilab Tevatron $p\bar{p}$ Collider at sqrt(s)=1.96 TeV. The measured cross sections are compared with next-to-leading order perturbative QCD calculations using different sets of parton distribution functions as well as to predictions based on the kT-factorization QCD approach, and those from the Sherpa and Pythia Monte Carlo event generators.
The differential cross section as a function of PT for the production of GAMMA + B-JET in the photon |rapidity/ region < 1.0.
The differential cross section as a function of PT for the production of GAMMA + B-JET in the photon |rapidity| region 1.5-2.5.
We present a measurement of the $\nu_e$-interaction rate in the MicroBooNE detector that addresses the observed MiniBooNE anomalous low-energy excess (LEE). The approach taken isolates neutrino interactions consistent with the kinematics of charged-current quasi-elastic (CCQE) events. The topology of such signal events has a final state with 1 electron, 1 proton, and 0 mesons ($1e1p$). Multiple novel techniques are employed to identify a $1e1p$ final state, including particle identification that use two methods of deep-learning-based image identification, and event isolation using a boosted decision-tree ensemble trained to recognize two-body scattering kinematics. This analysis selects 25 $\nu_e$-candidate events in the reconstructed neutrino energy range of 200--1200 MeV, while $29.0 \pm 1.9_\text{(sys)} \pm 5.4_\text{(stat)}$ are predicted when using $\nu_\mu$ CCQE interactions as a constraint. We use a simplified model to translate the MiniBooNE LEE observation into a prediction for a $\nu_e$ signal in MicroBooNE. A $\Delta \chi^2$ test statistic, based on the combined Neyman--Pearson $\chi^2$ formalism, is used to define frequentist confidence intervals for the LEE signal strength. Using this technique, in the case of no LEE signal, we expect this analysis to exclude a normalization factor of 0.75 (0.98) times the median MiniBooNE LEE signal strength at 90% ($2\sigma$) confidence level, while the MicroBooNE data yield an exclusion of 0.25 (0.38) times the median MiniBooNE LEE signal strength at 90% ($2\sigma$) confidence
Observed NuE data and background (+ LEE) prediction, including the muon neutrino background prediction from the empirical fit, for arXiv:2110.14080. The prediction incorporates the constraint from the 1mu1p sample
Observed NuE data and background (+ LEE) prediction, including the muon neutrino background prediction from the empirical fit, for arXiv:2110.14080. The prediction does not incorporate the constraint from the 1mu1p sample
NuE background fractional covariance matrix after the 1mu1p constraint from arXiv:2110.14080
We present the first measurements at a hadron collider of differential cross sections for Z+jet+X production in delta phi(Z, jet), |delta y(Z, jet)| and |y_boost(Z, jet)|. Vector boson production in association with jets is an excellent probe of QCD and constitutes the main background to many small cross section processes, such as associated Higgs production. These measurements are crucial tests of the predictions of perturbative QCD and current event generators, which have varied success in describing the data. Using these measurements as inputs in tuning event generators will increase the experimental sensitivity to rare signals.
Differential cross section in bins of PHI(P=3)-PHI(P=4) for Z/GAMMA* transverse momentum > 25 GeV.
Differential cross section in bins of PHI(P=3)-PHI(P=4) for Z/GAMMA* transverse momentum > 45 GeV.
Differential cross section in bins of ABS(YRAP(P=3)-YRAP(P=4)) for Z/GAMMA* transverse momentum > 25 GeV.
We present the first measurement of the inclusive three-jet differential cross section as a function of the invariant mass of the three jets with the largest transverse momenta in an event in p anti-p collisions at sqrt(s) = 1.96 TeV. The measurement is made in different rapidity regions and for different jet transverse momentum requirements and is based on a data set corresponding to an integrated luminosity of 0.7 fb^{-1} collected with the D0 detector at the Fermilab Tevatron Collider. The results are used to test the three-jet matrix elements in perturbative QCD calculations at next-to-leading order in the strong coupling constant. The data allow discrimination between parametrizations of the parton distribution functions of the proton.
The measured 3-jet differential cross section for |y|<0.8 and pT>40 GeV.
The measured 3-jet differential cross section for |y|<1.6 and pT>40 GeV.
The measured 3-jet differential cross section for |y|<2.4 and pT>40 GeV.
Using 7.3 pb-1 of ppbar collisions collected by the D0 detector at the Fermilab Tevatron, we measure the distribution of the variable \phistar, which probes the same physical effects as the Z/gamma* boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. A QCD prediction is found to describe the general features of the \phistar distribution, but is unable to describe its detailed shape or dependence on boson rapidity. A prediction that includes a broadening of transverse momentum for small values of the parton momentum fraction is strongly disfavored.
The measured PHI* distributions for the dielectron events corrected back to the particle level. The distributions are normalised to unity inidividually for each abs(yrap) bin and channel.
The measured PHI* distributions for the dimuon events corrected back to the particle level. The distributions are normalised to unity inidividually for each abs(yrap) bin and channel.
Samples of inclusive photon+2 jet and photon+3 jet events collected by the D0 experiment with an integrated luminosity of about 1fb^-1 in ppbar collisions at sqrt{s}=1.96 TeV are used to measure cross sections as a function of the angle in the plane transverse to the beam direction between the transverse momentum (pT) of the photon+leading jet system (jets are ordered in pT) and pT of the other jet for photon+2 jet, or pT sum of the two other jets for photon+3 jet events. The results are compared to different models of multiple parton interactions (MPI) in the PYTHIA and SHERPA Monte Carlo (MC) generators. The data indicate a contribution from events with double parton (DP) interactions and are well described by predictions provided by the PYTHIA MPI models with pT-ordered showers and by SHERPA with the default MPI model. The photon+2 jet data are also used to determine the fraction of events with DP interactions as a function of the azimuthal angle and as a function of the second jet pT.
The normalised differential cross section of the azmiuthal decorrelation variable DELTA for the GAMMA+3JET sample for the PT of the second jet in the range 15 TO 30 GeV.
The normalised differential cross section of the azmiuthal decorrelation variable DELTA for the GAMMA+2JET sample for the PT of the second jet in the range 15 TO 20 GeV.
The normalised differential cross section of the azmiuthal decorrelation variable DELTA for the GAMMA+2JET sample for the PT of the second jet in the range 20 TO 25 GeV.
We present a new measurement of the Z/gamma* transverse momentum distribution in the range 0 - 330GeV, in proton-antiproton collisions at sqrt{s}=1.96 TeV. The measurement uses 0.97 fb-1 of integrated luminosity recorded by the D0 experiment and is the first using the Z/gamma*->mu+mu- + X channel at this center-of-mass energy. This is also the first measurement of the Z/gamma* transverse momentum distribution that presents the result at the level of particles entering the detector, minimizing dependence on theoretical models. As any momentum of the Z/gamma* in the plane transverse to the incoming beams must be balanced by some recoiling system, primarily the result of QCD radiation in the initial state, this variable is an excellent probe of the underlying process. Tests of the predictions of QCD calculations and current event generators show they have varied success in describing the data. Using this measurement as an input to theoretical predictions will allow for a better description of hadron collider data and hence it will increase experimental sensitivity to rare signals.
Normalized differential cross section.
Absolute differential cross section produced by multiplying by the measuredtotal cross section (118 pb).
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.
Fiducial phase-space cross-section at particle level.
$p_{T}^{t}$ absolute differential cross-section at particle level.
$|y^{t}|$ absolute differential cross-section at particle level.
The global topologies of inclusive three-- and four--jet events produced in $\pp$ interactions are described. The three-- and four--jet events are selected from data recorded by the D\O\ detector at the Tevatron Collider operating at a center--of--mass energy of $\sqrt{s} = 1800$ GeV. The measured, normalized distributions of various topological variables are compared with parton--level predictions of tree--level QCD calculations. The parton--level QCD calculations are found to be in good agreement with the data. The studies also show that the topological distributions of the different subprocesses involving different numbers of quarks are very similar and reproduce the measured distributions well. The parton shower Monte Carlo generators provide a less satisfactory description of the topologies of the three-- and four--jet events.
The estimated systematic uncertainty is 6 PCT.
The estimated systematic uncertainty is 6 PCT.
The estimated systematic uncertainty is 6 PCT.
Earlier measurements at LEP of isolated hard photons in hadronic Z decays, attributed to radiation from primary quark pairs, have been extended in the ALEPH experiment to include hard photon productioninside hadron jets. Events are selected where all particles combine democratically to form hadron jets, one of which contains a photon with a fractional energyz≥0.7. After statistical subtraction of non-prompt photons, the quark-to-photon fragmentation function,D(z), is extracted directly from the measured 2-jet rate. By taking into account the perturbative contributions toD(z) obtained from anO(ααs) QCD calculation, the unknown non-perturbative component ofD(z) is then determined at highz. Provided due account is taken of hadronization effects nearz=1, a good description of the other event topologies is then found.
2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).
2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).
2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).