We report on the measurement of the reaction e+e−→e+e− with a large—solid-angle electromagnetic shower detector at center-of-mass energies s=13 and 17 GeV. Comparison of our results with predictions of quantum electrodynamics shows excellent agreement in both the angular distribution and energy dependence. Values of cutoff parameters are also given.
No description provided.
None
No description provided.
No description provided.
No description provided.
First results from the magnetic detector PLUTO at the new e + e − storage ring PETRA are shown. The ratio R of the cross section for hadron production to that for μ-pair production has been measured to be R = 5.0 ± 0.5 at 13 GeV and 4.3 ±0.5 at 17 GeV. Both values have an additional systematic error of 20%. The events show a typical 2-jet structure. The mean transverse momentum approaches a constant value with increasing energy implying a shrinkage of the jet opening angle.
TAU HEAVY LEPTON PAIR CONTRIBUTIONS HAVE BEEN SUBTRACTED. R AT 13 AND 17 GEV, TOGETHER WITH SOME SELECTED LOWER ENERGY MEASUREMENTS FROM PLUTO AT DORIS.
Data from earlier preprint DESY-79-06. NUMERICAL VALUES MEASURED OFF GRAPH IN PREPRINT.
We report the first measurement of the ratio R=(σe+e−→hadrons)(σe+e−→μ+μ−) (with negligible τ-lepton contribution) at a center-of-mass energy s=13 GeV and s=17 GeV, from the just finished electron-positron colliding-beam facility PETRA. The detector, MARK-J, has an approximately 4π solid angle and measures γ, e, μ, and charged and neutral hadrons simultaneously. Our results yield R(s=17 GeV)=4.9±0.6 (statistical) ±0.7 (systematic error), and R(s=13 GeV)=4.6±0.5 (statistical) ±0.7 (systematic error). The ratio R(s=17 GeV)R(s=13 GeV) is 1.08±0.18.
No description provided.
No description provided.
We present the results obtained with the magnetic detector DM1 at the Orsay storage ring ACO for the reaction e + e − → π + π − π 0 from 483 to 1100 MeV in the center of mass. Our data show without ambiguity an interference effect between the ω and φ mesons, which corresponds to a negative coupling constant product ratio Re( g γω g ω →3 π / g γφ g φ →3 π ) ; however our measurements above the φ, performed using kinematical analysis, can only be explained by a higher energy contribution. In addition, the parameters of the ω have been obtained with an improved accuracy compared to other experiments, and particularly the branching ratio B ω →e + e − = (6.75±0.69) × 10 −5 . We confirm that the reaction e + e − → π + π − π 0 proceeds essentially via a quasi-two-body state ϱπ , at the energy of the φ.
FITTED CROSS SECTION AT OMEGA PEAK IS 1410 +- 130 NB AND AT PHI PEAK IS 615 +- 55 NB.
We present data obtained at the ISR, on the determination of the ratio R = γ π 0 at s = 30.6 GeV and we compare the results with our previous measurement at s = 53.2 GeV. The ratio R = γ π 0 integrated over the interval 0.1 ⩽ χ T ⩽ 0.2 is (1.6 ± 0.5) × 10 −2 and we obtain an indication of a universal χ T dependence.
No description provided.
On a selected sample of 2171 events, observed in the big heavy liquid bubble chamber Gargamelle at CERN, the charged current total cross section for antineutrino on nucleons has been determined up to the laboratory energy E v ̄ = 8 GeV . The total cross section is found to be a linear function of the antineutrino energy expressed by σ tot (E v ̄ ) = (0.26 ± 0.020) × 10 −38 × E v ̄ ( GeV ) cm 2 . The energy dependence of 〈q 2 〉 v ̄ is found to be given by 〈q 2 〉 v ̄ = (0.15 ± 0.04)E v ̄ + (0.05 ± 0.12) ( GeV /c) 2 . With a simplified nuclear model the ratio of cross sections on neutrons andprotons has been estimated as a function of energy and for two different values of the scaling variable x . The results are compared with the prediction of the naive quark parton model.
Measured charged current total cross section.
New data for the reaction e + e − →ϒ(9.46) have been obtained using the DASP detector at the DORIS storage ring. The electronic width Γ ee is (1.5±0.4) keV. The branching ratio for the decay into muon pairs is (2.5 ± 2.1)%. Energy spectra for inclusive production of hadrons are given.
VISIBLE HADRONIC TOTAL CROSS SECTION.
INVARIANT INCLUSIVE PRODUCTION CROSS SECTION E*D3(SIG)/DP**3 BOTH ON AND OFF THE UPSILON(9.46) RESONANCE. NO SIGNIFICANT DIFFERENCE IN EXPONENTIAL SLOPE AS A FUNCTION OF PARTICLE ENERGY E(P=3).
The inclusive production of Ξ − and Ξ ∗0 (1530) is investigated in K − p interactions at 10 and 16 GeV/ c . The inclusive production cross sections are 172 ± 20 μ b and 135 ± 15 μ b for the Ξ − , and 43 ± 7 μ b and 32 ± 5 μ b for the Ξ ∗0 (1530) at 10 and 16 GeV /c , respectively. In the beam momentum range up to 16 GeV/ c , the energy dependence of the cross section for Ξ − production in K − p interactions is similar to Σ − production in π − p interactions. It is, instead, different from the energy behaviour of Σ − production cross sections observed in π − p interactions. The Ξ − and Ξ ∗0 (1530) are both produced more in the forward ( x > 0) than in the backward hemisphere, indicating the presence of hyperon-exchange processes.
No description provided.
No description provided.
The energy dependence of the K L 0 -K S 0 transmission regeneration amplitudes on deuterons and neutrons in the momentum region 10–50 GeV/ c is determined. The moduli of the modified transmission amplitudes are momentum dependent. These dependences are fitted by the expression A j p − nj , where A j and n j ( j = d, n) are constants: A d =2.88 ±0.04 mb , n d =0.546±0.030, for deuterons , A n =1.97 ±0.14 mb , n n =0.530±0.019, for neutrons , The amplitude phases do not depend on the kaon momentum and are equal to ϕ d = (−130.9 ± 2.7)° ϕ n = (−132.3 ± 1.7)°. The mean value of the ratio of the total cross-section differences for K 0 and K 0 interactions with neutrons and protons is determined. The residues of the partial ω and ϱ amplitudes, which contribute to the kaon-nucleon interaction amplitudes, are also obtained.
FORWARD CROSS SECTION, AMPLITUDE AND PHASE FOR K0 REGENERATION.
(AK0 - K0) TOTAL CROSS SECTION DIFFERENCES.