Measurements of bottomonium production in heavy ion and $p$$+$$p$ collisions at the Relativistic Heavy Ion Collider (RHIC) are presented. The inclusive yield of the three $\Upsilon$ states, $\Upsilon(1S+2S+3S)$, was measured in the PHENIX experiment via electron-positron decay pairs at midrapidity for Au$+$Au and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The $\Upsilon(1S+2S+3S)\rightarrow e^+e^-$ differential cross section at midrapidity was found to be $B_{\rm ee} d\sigma/dy =$ 108 $\pm$ 38 (stat) $\pm$ 15(syst) $\pm$ 11 (luminosity) pb in $p$$+$$p$ collisions. The nuclear modification factor in the 30\% most central Au$+$Au collisions indicates a suppression of the total $\Upsilon$ state yield relative to the extrapolation from $p$$+$$p$ collision data. The suppression is consistent with measurements made by STAR at RHIC and at higher energies by the CMS experiment at the Large Hadron Collider.
Summary of the measured $\Upsilon$ invariant multiplicities, $BdN/dy$, for one $p + p$ three Au + Au data sets.
Summary of the measured $\Upsilon$ nuclear modification factors, $R_{AA}$, for Au + Au data sets.
Summary of the measured $\Upsilon$ nuclear modification factors, $R_{AA}$, for Au + Au data sets.
We report on $J/\psi$ production from asymmetric Cu+Au heavy-ion collisions at $\sqrt{s_{_{NN}}}$=200 GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of $J/\psi$ yields in Cu$+$Au collisions in the Au-going direction is found to be comparable to that in Au$+$Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, $J/\psi$ production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-$x$ gluon suppression in the larger Au nucleus. The relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.
Nuclear modification factor ($R_{AA}$) at forward (1.2<$y$<2.2 Cu-going) and backward (-2.2<$y$<-1.2 Au-going) rapidity and forward/backward ratio as a function of centrality (%).
Local parity-odd domains are theorized to form inside a Quark-Gluon-Plasma (QGP) which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect (CME). The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this paper, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy, and tends to vanish by 7.7 GeV. The implications of these results for the CME will be discussed.
The three-point correlator, $\gamma$, as a function of centrality for Au+Au collisions at 62.4 GeV.
The three-point correlator, $\gamma$, as a function of centrality for Au+Au collisions at 39 GeV.
The three-point correlator, $\gamma$, as a function of centrality for Au+Au collisions at 27 GeV.
STAR measurements of dihadron azimuthal correlations ($\Delta\phi$) are reported in mid-central (20-60\%) Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV as a function of the trigger particle's azimuthal angle relative to the event plane, $\phi_{s}=|\phi_{t}-\psi_{\rm EP}|$. The elliptic ($v_2$), triangular ($v_3$), and quadratic ($v_4$) flow harmonic backgrounds are subtracted using the Zero Yield At Minimum (ZYAM) method. The results are compared to minimum-bias d+Au collisions. It is found that a finite near-side ($|\Delta\phi|<\pi/2$) long-range pseudorapidity correlation (ridge) is present in the in-plane direction ($\phi_{s}\sim 0$). The away-side ($|\Delta\phi|>\pi/2$) correlation shows a modification from d+Au data, varying with $\phi_{s}$. The modification may be a consequence of pathlength-dependent jet-quenching and may lead to a better understanding of high-density QCD.
raw correlation, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 0.
raw correlation, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 1.
raw correlation, Au+Au 200 GeV, 20-60%, 3<p_{T}^{(t)}<4 GeV/c, 1<p_{T}^{(a)}<2 GeV/c, |#eta|<1, slice 2.
The transverse momentum ($p_\text{T}$) distribution for inclusive neutral pions in the very forward rapidity region has been measured, with the Large Hadron Collider forward detector (LHCf), in proton--lead collisions at nucleon-nucleon center-of-mass energies of $\sqrt{s_{NN}} = 5.02$TeV at the LHC. The $p_\text{T}$ spectra obtained in the rapidity range $-11.0 < y_\text{lab} < -8.9$ and $0 < p_\text{T} < 0.6$GeV (in the detector reference frame) show a strong suppression of the production of neutral pions after taking into account ultra-peripheral collisions. This leads to a nuclear modification factor value, relative to the interpolated $p_\text{T}$ spectra in proton-proton collisions at $\sqrt{s} = 5.02$TeV, of about 0.1--0.4. This value is compared with the predictions of several hadronic interaction Monte Carlo simulations.
Production rate for PI0 production in the rapidity range -8.9 to -9.0.
Production rate for PI0 production in the rapidity range -9.0 to -9.2.
Production rate for PI0 production in the rapidity range -9.2 to -9.4.
We present results of analyses of two-pion interferometry in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV measured in the STAR detector as part of the RHIC Beam Energy Scan program. The extracted correlation lengths (HBT radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass ($m_{T}$) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes in the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.
Angular oscillations of the HBT radii relative to the event plane from 20-30% central, 19.6 GeV Au+Au collisions for 0.15 < kT < 0.6 GeV/c. HHLW Radii uncorrected for resolution and binning for $R_{out}$.
Angular oscillations of the HBT radii relative to the event plane from 20-30% central, 19.6 GeV Au+Au collisions for 0.15 < kT < 0.6 GeV/c. HHLW Radii for resolution and binning for $R_{out}$, $R_{side}$, $R_{long}$, $R_{os}$, and $R_{ol}$ respectively.
Angular oscillations of the HBT radii relative to the event plane from 20-30% central, 19.6 GeV Au+Au collisions for 0.15 < kT < 0.6 GeV/c. Radius values according to global fit of Fourier Coefficients for $R_{out}$, $R_{side}$, $R_{long}$, $R_{os}$, and $R_{ol}$ respectively.
Results are presented from data recorded in 2009 by the PHENIX experiment at the Relativistic Heavy Ion Collider for the double-longitudinal spin asymmetry, $A_{LL}$, for $\pi^0$ and $\eta$ production in $\sqrt{s} = 200$ GeV polarized $p$$+$$p$ collisions. Comparison of the $\pi^0$ results with different theory expectations based on fits of other published data showed a preference for small positive values of gluon polarization, $\Delta G$, in the proton in the probed Bjorken $x$ range. The effect of adding the new 2009 \pz data to a recent global analysis of polarized scattering data is also shown, resulting in a best fit value $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}} = 0.06^{+0.11}_{-0.15}$ in the range $0.05
PI0 ASYM(LL) measurements from 2005.
PI0 ASYM(LL) measurements from 2006.
PI0 ASYM(LL) measurements from 2009.
We report on the first measurement of the azimuthal anisotropy ($v_2$) of dielectrons ($e^{+}e^{-}$ pairs) at mid-rapidity from $\sqrt{s_{_{NN}}} = 200$ GeV Au+Au collisions with the STAR detector at RHIC, presented as a function of transverse momentum ($p_T$) for different invariant-mass regions. In the mass region $M_{ee}\!<1.1$ GeV/$c^2$ the dielectron $v_2$ measurements are found to be consistent with expectations from $\pi^{0}$, $\eta$, $\omega$ and $\phi$ decay contributions. In the mass region $1.1\!
The dielectron $v_2$ in the $\pi^0$ Dalitz decay region as a function of $p_T$ in different centralities from Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Expected dielectron $v_2$ from $\pi^0$ Dalitz decay as a function of $p_T$ in different centralities from Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
The dielectron $v_2$ as a function of $p_T$ in minimum-bias Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for the $\pi^0$ mass region.
We report the first measurements of the moments -- mean ($M$), variance ($\sigma^{2}$), skewness ($S$) and kurtosis ($\kappa$) -- of the net-charge multiplicity distributions at mid-rapidity in Au+Au collisions at seven energies, ranging from $\sqrt {{s_{\rm NN}}}$= 7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net-charge, and are sensitive to the proximity of the QCD critical point. We compare the products of the moments, $\sigma^{2}/M$, $S\sigma$ and $\kappa\sigma^{2}$ with the expectations from Poisson and negative binomial distributions (NBD). The $S\sigma$ values deviate from Poisson and are close to NBD baseline, while the $\kappa\sigma^{2}$ values tend to lie between the two. Within the present uncertainties, our data do not show non-monotonic behavior as a function of collision energy. These measurements provide a distinct way of determining the freeze-out parameters in heavy-ion collisions by comparing with theoretical models.
The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 7.7 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 11.5 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 19.6 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.
Charged-pion-interferometry measurements were made with respect to the 2$^{\rm nd}$- and 3$^{\rm rd}$-order event plane for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. A strong azimuthal-angle dependence of the extracted Gaussian-source radii was observed with respect to both the 2$^{\rm nd}$- and 3$^{\rm rd}$-order event planes. The results for the 2$^{\rm nd}$-order dependence indicate that the initial eccentricity is reduced during the medium evolution, but not reversed in the final state, which is consistent with previous results. In contrast, the results for the 3$^{\rm rd}$-order dependence indicate that the initial triangular shape is significantly reduced and potentially reversed by the end of the medium evolution, and that the 3$^{\rm rd}$-order oscillations are largely dominated by the dynamical effects from triangular flow.
The azimuthal dependence of $R^2_s$, $R^2_o$, $R^2_l$, and $R^2_{os}$ for charged pions in 0.2 < $k_T$ < 2.0 GeV/$c$ with respect to second-(a)-(d) and third-order (e)-(h) event plane in Au + Au collisions at $\sqrt{S_{NN}}$ 200 GeV.
The azimuthal dependence of $R^2_s$, $R^2_o$, $R^2_l$, and $R^2_{os}$ for charged pions in 0.2 < $k_T$ < 2.0 GeV/$c$ with respect to second-(a)-(d) and third-order (e)-(h) event plane in Au + Au collisions at $\sqrt{S_{NN}}$ 200 GeV.
The solid points are the oscillation amplitudes relative to the average of HBT radii for four different combinations (a) $2R^{2}_{s,n}/R^{2}_{s,0}$, (b) $2R^{2}_{os,n}/R^{2}_{s,0}$, (c) $2R^{2}_{o,n}/R^{2}_{o,0}$, and (d) $2R^{2}_{o,n}/R^{2}_{s,0}$ as a function of initial spatial anisotropy ($\varepsilon_{n}$), which are calculated using the Glauber model.