Date

Search for a heavy resonance decaying to a pair of vector bosons in the lepton plus merged jet final state at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2018) 088, 2018.
Inspire Record 1657397 DOI 10.17182/hepdata.85739

A search for a new heavy particle decaying to a pair of vector bosons (WW or WZ) is presented using data from the CMS detector corresponding to an integrated luminosity of 35.9 fb$^{-1}$ collected in proton-proton collisions at a centre-of-mass energy of 13 TeV in 2016. One of the bosons is required to be a W boson decaying to e$\nu$ or $\mu\nu$, while the other boson is required to be reconstructed as a single massive jet with substructure compatible with that of a highly-energetic quark pair from a W or Z boson decay. The search is performed in the resonance mass range between 1.0 and 4.5 TeV. The largest deviation from the background-only hypothesis is observed for a mass near 1.4 TeV and corresponds to a local significance of 2.5 standard deviations. The result is interpreted as an upper bound on the resonance production cross section. Comparing the excluded cross section values and the expectations from theoretical calculations in the bulk graviton and heavy vector triplet models, spin-2 WW resonances with mass smaller than 1.07 TeV and spin-1 WZ resonances lighter than 3.05 TeV, respectively, are excluded at 95% confidence level.

3 data tables

Exclusion limits on the product of the production cross section and the branching fraction for a new spin-2 resonance decaying to WW, as a function of the resonance mass hypothesis.

Exclusion limits on the product of the production cross section and the branching fraction for a new spin-1 resonance decaying to WZ, as a function of the resonance mass hypothesis.

Signal selection efficiency times acceptance as a function of resonance mass for a spin-2 bulk graviton decaying to WW and a spin-1 W' decaying to WZ.


Measurements of differential cross sections of top quark pair production in association with jets in ${pp}$ collisions at $\sqrt{s}=13$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 10 (2018) 159, 2018.
Inspire Record 1656578 DOI 10.17182/hepdata.81950

Measurements of differential cross sections of top quark pair production in association with jets by the ATLAS experiment at the LHC are presented. The measurements are performed as functions of the top quark transverse momentum, the transverse momentum of the top quark-antitop quark system and the out-of-plane transverse momentum using data from $pp$ collisions at $\sqrt{s}=13$ TeV collected by the ATLAS detector at the LHC in 2015 and corresponding to an integrated luminosity of 3.2 fb$^{-1}$. The top quark pair events are selected in the lepton (electron or muon) + jets channel. The measured cross sections, which are compared to several predictions, allow a detailed study of top quark production.

115 data tables

Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| in the 4-jet exclusive configuration and |$p_{out}^{t\bar{t}}$| in the 4-jet exclusive configuration, obtained through the Bootstrap Method.

Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| in the 4-jet exclusive configuration and $p_{T}^{t,had}$ in the 4-jet exclusive configuration, obtained through the Bootstrap Method.

Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| in the 4-jet exclusive configuration and $p_{T}^{t\bar{t}}$ in the 4-jet exclusive configuration, obtained through the Bootstrap Method.

More…

Light isovector resonances in $\pi^- p \to \pi^-\pi^-\pi^+ p$ at 190 GeV/${\it c}$

The COMPASS collaboration Aghasyan, M. ; Alexeev, M.G. ; Alexeev, G.D. ; et al.
Phys.Rev.D 98 (2018) 092003, 2018.
Inspire Record 1655631 DOI 10.17182/hepdata.82958

We have performed the most comprehensive resonance-model fit of $\pi^-\pi^-\pi^+$ states using the results of our previously published partial-wave analysis (PWA) of a large data set of diffractive-dissociation events from the reaction $\pi^- + p \to \pi^-\pi^-\pi^+ + p_\text{recoil}$ with a 190 GeV/$c$ pion beam. The PWA results, which were obtained in 100 bins of three-pion mass, $0.5 < m_{3\pi} < 2.5$ GeV/$c^2$, and simultaneously in 11 bins of the reduced four-momentum transfer squared, $0.1 < t' < 1.0$ $($GeV$/c)^2$, are subjected to a resonance-model fit using Breit-Wigner amplitudes to simultaneously describe a subset of 14 selected waves using 11 isovector light-meson states with $J^{PC} = 0^{-+}$, $1^{++}$, $2^{++}$, $2^{-+}$, $4^{++}$, and spin-exotic $1^{-+}$ quantum numbers. The model contains the well-known resonances $\pi(1800)$, $a_1(1260)$, $a_2(1320)$, $\pi_2(1670)$, $\pi_2(1880)$, and $a_4(2040)$. In addition, it includes the disputed $\pi_1(1600)$, the excited states $a_1(1640)$, $a_2(1700)$, and $\pi_2(2005)$, as well as the resonancelike $a_1(1420)$. We measure the resonance parameters mass and width of these objects by combining the information from the PWA results obtained in the 11 $t'$ bins. We extract the relative branching fractions of the $\rho(770) \pi$ and $f_2(1270) \pi$ decays of $a_2(1320)$ and $a_4(2040)$, where the former one is measured for the first time. In a novel approach, we extract the $t'$ dependence of the intensity of the resonances and of their phases. The $t'$ dependence of the intensities of most resonances differs distinctly from the $t'$ dependence of the nonresonant components. For the first time, we determine the $t'$ dependence of the phases of the production amplitudes and confirm that the production mechanism of the Pomeron exchange is common to all resonances.

2 data tables

Real and imaginary parts of the normalized transition amplitudes $\mathcal{T}_a$ of the 14 selected partial waves in the 1100 $(m_{3\pi}, t')$ cells (see Eq. (12) in the paper). The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the transition amplitudes in the column headers. The $m_{3\pi}$ values that are given in the first column correspond to the bin centers. Each of the 100 $m_{3\pi}$ bins is 20 MeV/$c^2$ wide. Since the 11 $t'$ bins are non-equidistant, the lower and upper bounds of each $t'$ bin are given in the column headers. The transition amplitudes define the spin-density matrix elements $\varrho_{ab}$ for waves $a$ and $b$ according to Eq. (18). The spin-density matrix enters the resonance-model fit via Eqs. (33) and (34). The transition amplitudes are normalized via Eqs. (9), (16), and (17) such that the partial-wave intensities $\varrho_{aa} = |\mathcal{T}_a|^2$ are given in units of acceptance-corrected number of events. The relative phase $\Delta\phi_{ab}$ between two waves $a$ and $b$ is given by $\arg(\varrho_{ab}) = \arg(\mathcal{T}_a) - \arg(\mathcal{T}_b)$. Note that only relative phases are well-defined. The phase of the $1^{++}0^+ \rho(770) \pi S$ wave was set to $0^\circ$ so that the corresponding transition amplitudes are real-valued. In the PWA model, some waves are excluded in the region of low $m_{3\pi}$ (see paper and [Phys. Rev. D 95, 032004 (2017)] for a detailed description of the PWA model). For these waves, the transition amplitudes are set to zero. The tables with the covariance matrices of the transition amplitudes for all 1100 $(m_{3\pi}, t')$ cells can be downloaded via the 'Additional Resources' for this table.

Decay phase-space volume $I_{aa}$ for the 14 selected partial waves as a function of $m_{3\pi}$, normalized such that $I_{aa}(m_{3\pi} = 2.5~\text{GeV}/c^2) = 1$. The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the decay phase-space volume in the column headers. The labels are identical to the ones used in the column headers of the table of the transition amplitudes. $I_{aa}$ is calculated using Monte Carlo integration techniques for fixed $m_{3\pi}$ values, which are given in the first column, in the range from 0.5 to 2.5 GeV/$c^2$ in steps of 10 MeV/$c^2$. The statistical uncertainties given for $I_{aa}$ are due to the finite number of Monte Carlo events. $I_{aa}(m_{3\pi})$ is defined in Eq. (6) in the paper and appears in the resonance model in Eqs. (19) and (20).


Measurement of the $\Lambda_b$ polarization and angular parameters in $\Lambda_b\to J/\psi\, \Lambda$ decays from pp collisions at $\sqrt{s}=$ 7 and 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 97 (2018) 072010, 2018.
Inspire Record 1654926 DOI 10.17182/hepdata.83664

An analysis of the decay $\Lambda_b \to J/\psi(\to\mu^+\mu^-)\Lambda(\to p \pi^-)$ decay is performed to measure the $\Lambda_b$ polarization and three angular parameters in data from pp collisions at $\sqrt{s} =$ 7 and 8 TeV, collected by the CMS experiment at the LHC. The $\Lambda_b$ polarization is measured to be 0.00 $\pm$ 0.06 (stat) $\pm$ 0.06 (syst) and the parity-violating asymmetry parameter is determined to be 0.14 $\pm$ 0.14 (stat) $\pm$ 0.10 (syst). The measurements are compared to various theoretical predictions, including those from perturbative quantum chromodynamics.

3 data tables

The measured values of the angular parameters and the $\Lambda_b$ polarization.

The values of the helicity amplitudes in the decay.

Correlation matrix for the fitted parameters.


Measurement of the inelastic proton-proton cross section at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 07 (2018) 161, 2018.
Inspire Record 1653948 DOI 10.17182/hepdata.83970

A measurement of the inelastic proton-proton cross section with the CMS detector at a center-of-mass energy of $\sqrt{s} =$ 13 TeV is presented. The analysis is based on events with energy deposits in the forward calorimeters, which cover pseudorapidities of -6.6 $< \eta $ 4.1 GeV and/or $M_\mathrm{Y} >$ 13 GeV, where $M_\mathrm{X}$ and $M_\mathrm{Y}$ are the masses of the diffractive dissociation systems at negative and positive pseudorapidities, respectively. The results are compared with those from other experiments as well as to predictions from high-energy hadron-hadron interaction models.

1 data table

The measured fiducial cross sections. The first bin represents the $\xi > 10^{-6}$ region, while the second bin represents the extended $\xi_{X} > 10^{-7}$ or $\xi_{Y} > 10^{-6}$ result. The first uncertainty is the systematic uncertainty excluding luminosity, the second is the luminosity uncertainty.


Search for lepton-flavor violating decays of heavy resonances and quantum black holes to e$\mu$ final states in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 04 (2018) 073, 2018.
Inspire Record 1653123 DOI 10.17182/hepdata.86568

A search is reported for heavy resonances decaying into e$\mu$ final states in proton-proton collisions recorded by the CMS experiment at the CERN LHC at $\sqrt{s}=$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The search focuses on resonance masses above 200 GeV. With no evidence found for physics beyond the standard model in the e$\mu$ mass spectrum, upper limits are set at 95% confidence level on the product of the cross section and branching fraction for this lepton-flavor violating signal. Based on these results, resonant $\tau$ sneutrino production in R-parity violating supersymmetric models is excluded for masses below 1.7 TeV, for couplings $\lambda_{132} = \lambda_{231} = \lambda'_{311} = 0.01$. Heavy Z$'$ gauge bosons with lepton-flavor violating transitions are excluded for masses up to 4.4 TeV. The e$\mu$ mass spectrum is also interpreted in terms of non-resonant contributions from quantum black-hole production in models with one to six extra spatial dimensions, and lower mass limits are found between 3.6 and 5.6 TeV. In all interpretations used in this analysis, the results of this search improve previous limits by about 1 TeV. These limits correspond to the most sensitive values obtained at colliders.

7 data tables

Expected upper limits at 95% CL on the product of the signal cross section and branching fraction for the tau sneutrino signal, as a function of the mass of the RPV resonance.

Observed upper limits at 95% CL on the product of the signal cross section and branching fraction for the tau-sneutrino signal, as a function of the mass of the RPV resonance.

Cross section of RPV tau-sneutrino as a function of mass. Cross section includes the branching ratio of tau-sneutrino decaying to $e\mu$.

More…

Comparing transverse momentum balance of b jet pairs in pp and PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2018) 181, 2018.
Inspire Record 1652833 DOI 10.17182/hepdata.82819

The transverse momentum balance of pairs of back-to-back b quark jets in PbPb and pp collisions recorded with the CMS detector at the LHC is reported. The center-of-mass energy in both collision systems is 5.02 TeV per nucleon pair. Compared to the pp collision baseline, b quark jets have a larger imbalance in the most central PbPb collisions, as expected from the jet quenching effect. The data are also compared to the corresponding measurement with inclusive dijets. In the most central collisions, the imbalance of b quark dijets is comparable to that of inclusive dijets.

14 data tables

Performance of double b-jet tagging, in terms of b-tagging purity and efficiency

Delta phi distributions of incluisve dijets and b-quark dijets in pp collisions

Delta phi distributions of incluisve dijets and b-quark dijets in central (0-10%) PbPb collisions

More…

Observation of medium induced modifications of jet fragmentation in PbPb collisions using isolated-photon-tagged jets

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 242301, 2018.
Inspire Record 1648162 DOI 10.17182/hepdata.80817

Measurements of fragmentation functions for jets associated with an isolated photon are presented for the first time in pp and PbPb collisions. The analysis uses data collected with the CMS detector at the CERN LHC at a nucleon-nucleon center-of-mass energy of 5.02 TeV. Fragmentation functions are obtained for jets with p$_\mathrm{T}^\text{jet} >$ 30 GeV in events containing an isolated photon with p$_\mathrm{T}^\gamma>$ 60 GeV, using charged tracks with transverse momentum p$_\mathrm{T}^\text{trk} >$ 1 GeV in a cone around the jet axis. The association with an isolated photon constrains the initial p$_\mathrm{T}$ and azimuthal angle of the parton whose shower produced the jet. For central PbPb collisions, modifications of the jet fragmentation functions are observed when compared to those measured in pp collisions, while no significant differences are found in the 50% most peripheral collisions. Jets in central PbPb events show an excess (depletion) of low (high) p$_\mathrm{T}$ particles, with a transition around 3 GeV.

16 data tables

$\xi^\mathrm{jet}$ distributions for jets associated with an isolated photon in pp and 50-100% centrality PbPb collisions. The resolutions of the measured jet energy and azimuthal angle in pp are smeared to match those in the PbPb sample.

$\xi^\mathrm{jet}$ distributions for jets associated with an isolated photon in pp and 30-50% centrality PbPb collisions. The resolutions of the measured jet energy and azimuthal angle in pp are smeared to match those in the PbPb sample.

$\xi^\mathrm{jet}$ distributions for jets associated with an isolated photon in pp and 10-30% centrality PbPb collisions. The resolutions of the measured jet energy and azimuthal angle in pp are smeared to match those in the PbPb sample.

More…

Search for decays of stopped exotic long-lived particles produced in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2018) 127, 2018.
Inspire Record 1645630 DOI 10.17182/hepdata.83010

A search is presented for the decays of heavy exotic long-lived particles (LLPs) that are produced in proton-proton collisions at a center-of-mass energy of 13 TeV at the CERN LHC and come to rest in the CMS detector. Their decays would be visible during periods of time well separated from proton-proton collisions. Two decay scenarios of stopped LLPs are explored: a hadronic decay detected in the calorimeter and a decay into muons detected in the muon system. The calorimeter (muon) search covers a period of sensitivity totaling 721 (744) hours in 38.6 (39.0) fb$^{-1}$ of data collected by the CMS detector in 2015 and 2016. The results are interpreted in several scenarios that predict LLPs. Production cross section limits are set as a function of the mean proper lifetime and the mass of the LLPs, for lifetimes between 100 ns and 10 days. These are the most stringent limits to date on the mass of hadronically decaying stopped LLPs, and this is the first search at the LHC for stopped LLPs that decay to muons.

33 data tables

The $\Delta t_{\text{DT}}$ distribution for 2016 data, MC simulated cosmic ray muon, 1000 GeV gluino signal, and 600 GeV MCHAMP signal events, for the muon search. The events plotted pass a subset of the full analysis selection that is designed to select good-quality DSA muon tracks but does not reject the cosmic ray muon background. The number of cosmic ray muon background events is greatly reduced when the full selection is applied, as we require $\Delta t_{\text{DT}}>-20$ ns and $\Delta t_{\text{RPC}}>-7.5$ ns. The histograms are normalized to unit area.

The $\Delta t_{\text{RPC}}$ distribution for 2016 data, MC simulated cosmic ray muon, 1000 GeV gluino signal, and 600 GeV MCHAMP signal events, for the muon search. The events plotted pass a subset of the full analysis selection that is designed to select good-quality DSA muon tracks but does not reject the cosmic ray muon background. The number of cosmic ray muon background events is greatly reduced when the full selection is applied, as we require $\Delta t_{\text{DT}}>-20$ ns and $\Delta t_{\text{RPC}}>-7.5$ ns. The histograms are normalized to unit area.

The $\varepsilon_{\text{reco}}$ values as a function of $E_{g}$, for $\tilde{g}$ R-hadrons that stop in the EB or HB, in the MC simulation, for the calorimeter search. The $\varepsilon_{\text{reco}}$ values are plotted for the two-body gluino decay, when $m_{\tilde{g}}$ is 600 GeV.

More…

Electroweak production of two jets in association with a Z boson in proton-proton collisions at $\sqrt{s}= $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 589, 2018.
Inspire Record 1645246 DOI 10.17182/hepdata.85867

A measurement of the electroweak (EW) production of two jets in association with a Z boson in proton-proton collisions at $\sqrt{s} = $ 13 TeV is presented, based on data recorded in 2016 by the CMS experiment at the LHC corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The measurement is performed in the $\ell\ell\mathrm{jj}$ final state with $\ell$ including electrons and muons, and the jets j corresponding to the quarks produced in the hard interaction. The measured cross section in a kinematic region defined by invariant masses $m_{\ell\ell} > $ 50 GeV, $m_{\mathrm{jj}} > $ 120 GeV, and transverse momenta $p_{\mathrm{T j}} > $ 25 GeV is $\sigma_\mathrm{EW}(\ell\ell\mathrm{jj})= $ 552 $\pm$ 19 (stat) $\pm$ 55 (syst) fb, in agreement with leading-order standard model predictions. The final state is also used to perform a search for anomalous trilinear gauge couplings. No evidence is found and limits on anomalous trilinear gauge couplings associated with dimension-six operators are given in the framework of an effective field theory. The corresponding 95% confidence level intervals are $-2.6 < c_{WWW}/\Lambda^2 < 2.6 $ TeV$^{-2}$ and $-8.4 < c_{W}/\Lambda^2 < 10.1 $ TeV$^{-2}$. The additional jet activity of events in a signal-enriched region is also studied, and the measurements are in agreement with predictions.

14 data tables

One-dimensional limits on the ATGC EFT parameters at 95% CL

One-dimensional limits on the ATGC effective Lagrangian (LEP parametrization) parameters at 95% CL

The best fit signal strength for dielectron, dimuon and combined dilepton channels. The measurement is performed in a kinematic region defined by invariant masses $m_{ll}~>~50$ GeV, $m_{jj}~>~120$ GeV, and transverse momenta $p_{Tj}~>~25$ GeV, where $l$ denotes electrons and muons, and $j$ - quarks produced in the hard interaction.

More…