The total cross section for e + e − annihilation into hadronic final states between 3.6 and 5.2 GeV was measured by the nonmagnetic inner detector of DASP, which has similar trigger and detection efficiencies for photons and charged particles. The measured difference in R = σ had / σμμ between 3.6 GeV and 5.2 GeV is ΔR = 2.1 ± 0.3. We observe three peaks at cm energies of 4.04, 4.16 and 4.417 GeV, the parameters of which, when interpreted as resonances, are given.
EXCLUDING CONTRIBUTION OF TAU HEAVY LEPTON.
INCLUDING CONTRIBUTION OF TAU HEAVY LEPTON.
Inclusive single-particle spectra for π± production are presented for data from π±p interactions at 100 GeV/c. The spectra for the four reactions π±p→π±+anything are compared as a function of laboratory longitudinal momentum, Feynman x, center-of-mass (c.m.) rapidity, and transverse momentum squared. Comparisons are also made between these data and analogous data from 16 and 18.5 GeV/c π±p interactions and the energy dependence is discussed. Average values of the transverse momentum are given as a function of the longitudinal momentum and charged-particle multiplicity. A comparison of the charge distributions is presented as a function of rapidity and c.m. energy.
No description provided.
No description provided.
No description provided.
Electroproduction of hadrons is studied in the kinematic region W < 2.8 GeV and 0.3 < Q 2 < 1.4 GeV 2 using the DESY streamer chamber. Prong cross sections, charged-particle multiplicities and inclusive π − distributions are presented. The average charged multiplicity is found to be independent of Q 2 in the Q 2 range studied here; however it is lower than in photoproduction. The fraction of forward π − is found to be significantly less in electroproduction than in photoproduction. The 〈 p ⊥ 2 〉 for inclusive π − is, for all x values, similar to that found in photoproduction.
No description provided.
No description provided.
No description provided.
The multiplicity distribution of inclusive electron events above 4 GeV cm energy shows two distinct classes of events: two prong no photon and high multiplicity events. If the high multiplicity events are attributed to the semi-leptonic decay of charmed particles the two prong no photon events must come from the weak decay of a different type of particle. The charged K to π ratio was measured for these events. The average number of charged kaons is 0.07 ± 0.06 per two prong event and 0.90 ± 0.18 per multiprong event. Thus the weak current responsible for the low multiplicity events has a small coupling to strange particles.
NUMBER OF CHARGED PARTICLES OBSERVED .EQ. 2.
NUMBER OF CHARGED PARTICLES OBSERVED .GE. 3.
The reactions K − d→ Σ − p, K − d→ Σ − (1385)p, K − d→ Λ (1405)n and K − d→ Λ (1520)n have been studied at K − momenta between 686 and 844 MeV/ c in an experiment with the 81 cm Saclay bubble chamber at CERN. About 630 000 pictures have been analyzed. Partial and differential cross sections are presented. A one-nucleon-exchange model is used to extract the kaon-nucleon-hyperon coupling constants from these results. For g( K N Σ(1197)), g( K N Σ(1385)) and g( K N Λ(1405)) we find values which are compatible with the SU(3) predictions. The coupling constant g( K N Λ(1520)) obtained by our method agrees with that determined from the partial decay width for Λ(1520)→ K N .
CROSS SECTIONS FROM FITTING WITH BREIT-WIGNER DISTRIBUTIONS AND SMOOTH BACKGROUND.
CROSS SECTION WITH A T-CUT.
CROSS SECTION WITH A T-CUT.
Charged hadron production via e + e − → h ± X where h ± = π ± , K ± , p ̄ has been measured for s values between 13 and 25 GeV 2 . Inclusive cross sections and the evidence for scaling are presented.
No description provided.
The total cross section for K ± production in e + e − collisions was measured for cms energies between 3.6 and 5 GeV and was found to increase by a factor of 2–3 from 3.6 to 4.1 GeV.
No description provided.
Qausi-elastic ω production by ep scattering in the kinematic region 0.3. < Q 2 < 1.4 GeV 2 and 1.7 < W < 2.8 GeV was studied using a streamer chamber at DESY. The production angular distribution for γ V p → ω p has a strong non-peripheral component for W < 2 GeV. The ω production cross section falls by a factor of 4 as W changes from 1.7 to 2.8 GeV. In contrast the cross section for ω production with | t | < 0.5 GeV 2 is W independent between 1.7 and 2.8 GeV and for W > 2.0 GeV consistent in both W and Q 2 dependence with the predictions of a model based on one-pion exchange and diffraction.
FOR ALL T-VALUES. THE GAMMA* P TOTAL CROSS SECTION WAS TAKEN FROM A FIT TO THE DATA OF S. STEIN ET AL., PR D12, 1884 (1975). 'PPD'.
'PPD'. PERIPHERAL OMEGA PRODUCTION.
No description provided.
Differential cross sections for K − n → Σ o π o have been measured at K − momenta between 680 and 840 MeV/ c in a bubble chamber experiment. For K − n → Σ o π − the Σ o polarization was also determined. The measurements were combined with the available data on K − p → Σπ in an energy-dependent partial wave analysis in the center of mass energy range from 1520 to 1745 MeV. An acceptable fit was obtained with the well established resonances.
FULL DETAILS OF THIS EXPERIMENT ARE IN V. HEPP ET AL., NP B115, 82 (1976), THE RECORD OF WHICH CONTAINS THE TABULATED TOTAL AND DIFFERENTIAL CROSS SECTIONS, POLARIZATIONS AND LEGENDRE POLYNOMIAL COEFFICIENTS.
π+p, K+p, and pp interactions at 100 GeV are studied using the Fermilab hybrid 30-inch bubble chamber with associated downstream multiparticle spectrometer and an unseparated tagged positive beam. Topological cross sections and charged-particle-multiplicity moments are presented and good agreement is found with Koba-Nielsen-Olesen scaling. The charged-multiplicity second moment, f2cc, and the second moment of produced (+ -) pairs, f2−−, are presented both with and without the diffractive-dissociation events, and are discussed in terms of the two-component model invoked to explain pp multiplicity distributions above 100 GeV. Single-particle inclusive distributions are presented and studied in terms of the Regge-Mueller forms of approach to scaling at asymptotic energies. Pomeron factorization is found to hold in the target-proton-associated backward center-of-mass hemisphere for inclusive particle production by incident π+, K+, and protons.
No description provided.
No description provided.
No description provided.