Date

Subject_areas

A study of the b-quark fragmentation function with the DELPHI detector at LEP I and an averaged distribution obtained at the Z Pole

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 71 (2011) 1557, 2011.
Inspire Record 890503 DOI 10.17182/hepdata.73739

The nature of b-quark jet hadronisation has been investigated using data taken at the Z peak by the DELPHI detector at LEP. Two complementary methods are used to reconstruct the energy of weakly decaying b-hadrons, E^weak_B. The average value of x^weak_B = E^weak_B/E_beam is measured to be 0.699 +/- 0.011. The resulting x^weak_B distribution is then analysed in the framework of two choices for the perturbative contribution (parton shower and Next to Leading Log QCD calculation) in order to extract measurements of the non-perturbative contribution to be used in studies of b-hadron production in other experimental environments than LEP. In the parton shower framework, data favour the Lund model ansatz and corresponding values of its parameters have been determined within PYTHIA~6.156 from DELPHI data: a= 1.84^{+0.23}_{-0.21} and b=0.642^{+0.073}_{-0.063} GeV^-2, with a correlation factor rho = 92.2%. Combining the data on the b-quark fragmentation distributions with those obtained at the Z peak by ALEPH, OPAL and SLD, the average value of x^weak_B is found to be 0.7092 +/- 0.0025 and the non-perturbative fragmentation component is extracted. Using the combined distribution, a better determination of the Lund parameters is also obtained: a= 1.48^{+0.11}_{-0.10} and b=0.509^{+0.024}_{-0.023} GeV^-2, with a correlation factor rho = 92.6%.

2 data tables

The combined unfolded and weighted results, per bin, for $f(x^{\rm weak}_{\rm B})$. Quoted uncertainties have been scaled by 1.31.

The average value of the $x^{\rm weak}_{\rm B}$ distribution.


Masses, lifetimes and production rates of Xi- and anti-Xi+ at LEP 1.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Phys.Lett.B 639 (2006) 179-191, 2006.
Inspire Record 719387 DOI 10.17182/hepdata.26952

Measurements of the Xi- and anti-Xi+ masses, mass differences, lifetimes and lifetime differences are presented. The anti-Xi+ sample used is much larger than those used previously for such measurements. In addition, the Xi production rates in Z -> b anti-b and Z -> q anti-q events are compared and the position xi* of the maximum of the xi distribution in Z -> q anti-q events is measured.

3 data tables

Corrected LN(1/X) distribution for (XI- + XIBAR+) production.

Measured and extrapoplated production rates.

Extrapolated production rate in b-bbar events.


Study of the fragmentation of b quarks into B mesons at the Z peak.

The ALEPH collaboration Heister, A. ; Schael, S. ; Barate, R. ; et al.
Phys.Lett.B 512 (2001) 30-48, 2001.
Inspire Record 558327 DOI 10.17182/hepdata.48926

The fragmentation of b quarks into B mesons is studied with four million hadronic Z decays collected by the ALEPH experiment during the years 1991-1995. A semi-exclusive reconstruction of B->l nu D(*) decays is performed, by combining lepton candidates with fully reconstructed D(*) mesons while the neutrino energy is estimated from the missing energy of the event. The mean value of xewd, the energy of the weakly-decaying B meson normalised to the beam energy, is found to be mxewd = 0.716 +- 0.006 (stat) +- 0.006 (syst) using a model-independent method; the corresponding value for the energy of the leading B meson is mxel = 0.736 +- 0.006 (stat) +- 0.006 (syst). The reconstructed spectra are compared with different fragmentation models.

6 data tables

Normalized binned spectra for weakly-decaying (WD) leading (L) B-mesons.

The extracted spectra spectra for weakly-decaying (WD) leading (L) B-mesons.

Statistical error matrix for the Weakly Decaying distribution in units of 10**-6.

More…

Studies of quantum chromodynamics with the ALEPH detector

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Phys.Rept. 294 (1998) 1-165, 1998.
Inspire Record 428072 DOI 10.17182/hepdata.47582

Previously published and as yet unpublished QCD results obtained with the ALEPH detector at LEP1 are presented. The unprecedented statistics allows detailed studies of both perturbative and non-perturbative aspects of strong interactions to be carried out using hadronic Z and tau decays. The studies presented include precise determinations of the strong coupling constant, tests of its flavour independence, tests of the SU(3) gauge structure of QCD, study of coherence effects, and measurements of single-particle inclusive distributions and two-particle correlations for many identified baryons and mesons.

44 data tables

Charged particle sphericity distribution.

Charged particle aplanarity distribution.

Charged particle Thrust distribution.

More…

Quark and gluon jet properties in symmetric three-jet events

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 384 (1996) 96008490 353-364, 1996.
Inspire Record 404562 DOI 10.17182/hepdata.48015

Quark and gluon jets with the same energy, 24 GeV, are compared in symmetric three-jet configurations from hadronic Z decays observed by the ALEPH detector. Jets are defined using the Durham algorithm. Gluon jets are identified using an anti-tag on b jets, based on a track impact parameter method. The comparison of gluon and mixed flavour quark jets shows that gluon jets have a softer fragmentation function, a larger angular width and a higher particle multiplicity, Evidence is presented which shows that the corresponding differences between gluon and b jets are significantly smaller. In a statistically limited comparison the multiplicity in c jets was found to be comparable with that observed for the jets of mixed quark flavour.

2 data tables

B-jets are identified with the lepton-tag analysis.

The same kinematics as in the table 1.


Production of charmed mesons in Z decays

The ALEPH collaboration Buskulic, D. ; De Bonis, I. ; Decamp, D. ; et al.
Z.Phys.C 62 (1994) 1-14, 1994.
Inspire Record 363280 DOI 10.17182/hepdata.48368

The production of charmed mesons$$\mathop {D^0 }\limits^{( - )} $$,D

4 data tables

No description provided.

The DSYS error is due to the error in the branching ratio.

The DSYS error is due to the error in the branching ratio.

More…

Properties of hadronic Z decays and test of QCD generators

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Z.Phys.C 55 (1992) 209-234, 1992.
Inspire Record 334577 DOI 10.17182/hepdata.1420

Distributions are presented of event shape variables, jet roduction rates and charged particle momenta obtained from 53 000 hadronicZ decays. They are compared to the predictions of the QCD+hadronization models JETSET, ARIADNE and HERWIG, and are used to optimize several model parameters. The JETSET and ARIADNE coherent parton shower (PS) models with running αs and string fragmentation yield the best description of the data. The HERWIG parton shower model with cluster fragmentation fits the data less well. The data are in better agreement with JETSET PS than with JETSETO(αS2) matrix elements (ME) even when the renormalization scale is optimized.

41 data tables

Sphericity distribution.

Sphericity distribution.

Aplanarity distribution.

More…

Properties of Charm Jets Produced in $e^+ e^-$ Annihilation Near 34-{GeV}

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Kirschfink, F.J. ; et al.
Phys.Lett.B 135 (1984) 243-249, 1984.
Inspire Record 194050 DOI 10.17182/hepdata.30600

D ∗± production via e + e − → D ∗± X was studied at CM energies near 34 GeV. The charged particles produced in the hemisphere opposite to that of the D ∗ were used to investigate the fragmentation of charm jets. All spectra studied show a close similarity between the charm jet and the average jet obtained by summing over all quark flavours. The spectra of particles produced in the D ∗ hemisphere were used to study separately first rank and higher rank fragmentation.

2 data tables

THE C-JET IS THE JET IN THE HEMISPHERE OPPOSITE TO THAT CONTAINING THE D* MESON. DIVISION IS MADE BY A PLANE PERPENDICULAR TO THE THRUST AXIS.

No description provided.