A Study of $K^0_S$, $\Lambda$ and $\bar{\Lambda}$ Production in 60-{GeV} and 200-{GeV} Per Nucleon O Au and $p$ Au Collisions With a Streamer Chamber Detector at the {CERN} {SPS}

The NA35 collaboration Bamberger, A. ; Bartke, J. ; Bialkowska, H. ; et al.
Z.Phys.C 43 (1989) 25, 1989.
Inspire Record 276686 DOI 10.17182/hepdata.15456

The production of neutral strange particlesKso, Λ and\(\bar \Lambda \) has been studied in 60 and 200 GeV per nucleon OAu and pAu collisions with the streamer chamber vertex spectrometer of the NA35 experiment at the CERN-SPS accelerator. Ratios of neutral strange particle production to negatively charged particle production in selected regions of phase space were measured to be the same in OAu and pAu reactions. The rates of strange particle production in central OAu collisions are about a factor of 16 higher than in pAu collisions when compared in the same regions of phase space. If an enhancement of strange particle production in OAu collisions relative to pAu collisions is considered to be a signature for quark-gluon plasma formation, no evidence supporting it is observed. The experimental results are compared to the Lund FRITIOF model.

22 data tables

No description provided.

No description provided.

No description provided.

More…

CESIUM-IODINE DESIGNATED NUCLEUS.

CESIUM-IODINE DESIGNATED NUCLEUS.

CESIUM-IODINE DESIGNATED NUCLEUS.


CHARGED PARTICLE MULTIPLICITIES IN PI-, K- AND ANTI-P INTERACTIONS WITH NUCLEI AT 40-GEV/C

The RISK collaboration Boos, E.G. ; Mosienko, A.M. ; Pokrovsky, N.A. ; et al.
Z.Phys.C 26 (1984) 43-52, 1984.
Inspire Record 214970 DOI 10.17182/hepdata.22350

Interactions of 40 GeV/c πp-,K− and\(\bar p\) on Li, C, S, Cu, CsI and Pb were studied with the RISK-streamer chamber spectrometer. We present multiplicities of negatively charged particles, as well as of protons, and the correlations between them. The normalized mean multiplicity of negative particles,R−, depends on\(\bar v\), the average number of inelastic collisions as\(R^ -= (0.73 \pm 0.04) + (0.34 \pm 0.02)\bar v\). The dependence of the normalized dispersion of negative particles,D−/<N−>, on the number of protons favours independent collision models and contradicts the coherent tube picture. The excess of fast positive particles behaves asA0.4 and shows, for the heavier nuclei, a clear correlation with identified protons.

2 data tables

AVERAGE MULTIPLICITIES OF ALL CHARGED PARTICLES.

AVERAGE MULTIPLICITIES OF ALL NEGATIVELY CHARGED PARTICLES.


Center of mass energy and system-size dependence of photon production at forward rapidity at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Nucl.Phys.A 832 (2010) 134-147, 2010.
Inspire Record 822997 DOI 10.17182/hepdata.101347

We present the multiplicity and pseudorapidity distributions of photons produced in Au+Au and Cu+Cu collisions at \sqrt{s_NN} = 62.4 and 200 GeV. The photons are measured in the region -3.7 < \eta < -2.3 using the photon multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of the collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for Au+Au and Cu+Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for \sqrt{s_NN} = 62.4 GeV and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of \eta - ybeam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies.

14 data tables

Fig. 1. (Color online.) Top panel: Photon reconstruction efficiency $\left(\epsilon_{\gamma}\right)$ (solid symbols) and purity of photon sample $\left(f_{\mathrm{p}}\right)$ (open symbols) for PMD as a function of pseudorapidity $(\eta)$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=$ $200 \mathrm{GeV}$. Bottom panel: Comparison between estimated $\epsilon_{\gamma}$ and $f_{\mathrm{p}}$ for PMD as a function of $\eta$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4 \mathrm{GeV}$ using HIJING and AMPT models. The error bars on the AMPT data are statistical and those for HIJING are within the symbol size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

Fig. 1. (Color online.) Top panel: Photon reconstruction efficiency $\left(\epsilon_{\gamma}\right)$ (solid symbols) and purity of photon sample $\left(f_{\mathrm{p}}\right)$ (open symbols) for PMD as a function of pseudorapidity $(\eta)$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=$ $200 \mathrm{GeV}$. Bottom panel: Comparison between estimated $\epsilon_{\gamma}$ and $f_{\mathrm{p}}$ for PMD as a function of $\eta$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4 \mathrm{GeV}$ using HIJING and AMPT models. The error bars on the AMPT data are statistical and those for HIJING are within the symbol size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

Fig. 2. (Color online.) Event-by-event photon multiplicity distributions (solid circles) for $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=62.4$ and $200 \mathrm{GeV} .$ The distributions for top $0-5 \%$ central $\mathrm{Au}+$ Au collisions and top $0-10 \%$ central $\mathrm{Cu}+\mathrm{Cu}$ collisions are also shown (open circles). The photon multiplicity distributions for central collisions are observed to be Gaussian (solid line). Only statistical errors are shown. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

More…

Central Collisions of 14.6-{GeV}/nucleon, 60-{GeV}/nucleon, and 200-{GeV}/nucleon $^{16}$O Nuclei in Nuclear Emulsion

Barbier, L.M. ; Freier, P.S. ; Holynski, R. ; et al.
Phys.Rev.Lett. 60 (1988) 405-407, 1988.
Inspire Record 264260 DOI 10.17182/hepdata.2969

Central collisions of O16 nuclei with the Ag107 and Br80 nuclei in nuclear emulsion at 14.6, 60, and 200 GeV/nucleon are compared with proton-emulsion data at equivalent energies. The multiplicities of produced charged secondaries are consistent with the predictions of superposition models. At 200 GeV/nucleon the central particle pseudorapidity density is 58±2 for those events with multiplicities exceeding 200 particles.

5 data tables

Nucleus is average nucleus of BR-2 emulsion.

Nucleus is average nucleus of BR-2 emulsion.

Nucleus is average AG107/BR80 nucleus of BR-2 emulsion.

More…

Centrality dependence of longitudinal and transverse baryon distributions in ultrarelativistic nuclear collisions

The E814 collaboration Barrette, J. ; Bellwied, R. ; Braun-Munzinger, P. ; et al.
Phys.Rev.C 50 (1994) 3047-3059, 1994.
Inspire Record 385496 DOI 10.17182/hepdata.25982

Inclusive double differential multiplicities d2N/dy dpt and related quantities have been measured for protons and deuterons produced in 14.6A GeV/c Si+Al and Si+Pb collisions using the E814 forward spectrometer at the AGS at BNL. Collision ‘‘centrality’’ is determined by measuring Nc, the total charged particle multiplicity in the pseudorapidity range 0.85<η<3.8. For both systems Si + Al and Si + Pb, an increase in the proton rapidity distribution dN/dy at midrapidity and a corresponding decrease at higher rapidities are observed with increasing Nc. For Si+Pb, Boltzmann slope parameters TB increase significantly in the most central collisions. The measured distributions exhibit a centrality dependence even when σ/σgeo≲10%, where full overlap between the Si and Pb nuclei occurs in a simple geometric picture. The proton rapidity distribution dN/dy is presented for the symmetric system Si+Al over the entire rapididty interval. The total number of protons, which is the integral of this quantity over rapidity, varies with Nc. Results are compared with various model calculations, mostly using the hadronic cascade codes ARC and RQMD. No significant nuclear transparency is observed, indicating that large baryon and energy densities are produced in these collisions.

1 data table

No description provided.


Charged Particle Multiplicities and Interaction Cross-sections in High-energy Nuclear Collisions

The NA35 collaboration Bamberger, A. ; Bangert, D. ; Bartke, J. ; et al.
Phys.Lett.B 205 (1988) 583-589, 1988.
Inspire Record 262284 DOI 10.17182/hepdata.42035

Inelastic cross sections at 60 and 200 GeV/nucleon are determined in a streamer chamber for 16 O on several nuclear targets. Charged particle multiplicity distributions for inelastic and central collisions are studied and compared with theoretical predictions. The inelastic cross section exhibit a geometrical dependence on nuclear radii. The multiplicity data are governed by the collision geometry. They are consistent with a picture of superposition of independent nucleon-nucleus interactions.

2 data tables

Minimum bias events.

Hard veto and hard Et events.


Charged particle densities from Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The BRAHMS collaboration Bearden, I.G ; Beavis, D ; Besliu, C ; et al.
Phys.Lett.B 523 (2001) 227-233, 2001.
Inspire Record 561518 DOI 10.17182/hepdata.110252

We present charged particle densities as a function of pseudorapidity and collision centrality for the 197Au+197Au reaction at sqrt{s_{NN}}=130 GeV. An integral charged particle multiplicity of 3860+/-300 is found for the 5% most central events within the pseudorapidity range -4.7 <= eta <= 4.7. At mid-rapidity an enhancement in the particle yields per participant nucleon pair is observed for central events. Near to the beam rapidity, a scaling of the particle yields consistent with the ``limiting fragmentation'' picture is observed. Our results are compared to other recent experimental and theoretical discussions of charged particle densities in ultra-relativistic heavy-ion collisions.

7 data tables

NPART, $\mathrm{d}N/\mathrm{d}\eta$, $N_{\mathrm{ch}}^{\mathrm{tot}}$ versus $\mathrm{Centrality}$ for $x^{\pm}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$

$\mathrm{d}N/\mathrm{d}\eta$ versus $\eta$ for $x^{\pm}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$

$\mathrm{d}N/\mathrm{d}\eta$ versus $\eta$ for $x^{\pm}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$

More…

Charged particle multiplicities in nuclear collisions at 200-GeV/N

The NA35 collaboration Bächler, J. ; Bartke, J. ; Bialkowska, H. ; et al.
Z.Phys.C 51 (1991) 157-162, 1991.
Inspire Record 320907 DOI 10.17182/hepdata.14983

Data on multiplicities of charged particles produced in proton-nucleus and nucleus-nucleus collisions at 200 GeV per nucleon are presented. It is shown that the mean multiplicity of negative particles is proportional to the mean number of nucleons participating in the collision both for nucleus-nucleus and proton-nucleus collisions. The apparent consistency of pion multiplicity data with the assumption of an incoherent superposition of nucleon-nucleon collisions is critically discussed.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Charged particle spectra from anti-proton annihilation at rest in A = 12 - 238 nuclei

Hofmann, P. ; Hartmann, F.J. ; Daniel, H. ; et al.
Nucl.Phys.A 512 (1990) 669-683, 1990.
Inspire Record 303944 DOI 10.17182/hepdata.36859

Energy spectra of protons, deuterons and tritons from the annihilation of antiprotons stopped in 12 C, 40 Ca, 63 Cu, 92,98 Mo and 238 U have been measured with a Ge-detector telescope. Parameters related to the shape of the spectra were calculated and their dependence on target and ejectile mass number was determined. Yields per p̄ of directly emitted protons, deuterons and tritons and of evaporated protons were estimated.

6 data tables

THE PROTON SPECTRA WERE FITTED WITH THE EXPRESSION N(E)=N1*EXP( -SLOPE(Q=1)*E)+N2*EXP(-SLOPE(Q=2)*E).

Axis error includes +- 0.0/0.0 contribution (?////).

Axis error includes +- 0.0/0.0 contribution (?////).

More…