$\pi$-proton scattering at 516, 616, 710, 887, and 1085 MeV

Gbaed, F. ; Montanet, L. ; Lehmann, P. ; et al.
Nuovo Cim. 22 (1961) 193-198, 1961.
Inspire Record 1187691 DOI 10.17182/hepdata.37734

We present results on .~--p seattering at kinetic energies in the laboratory of 516, 616, 710, 887 and 1085MeV. The data were obtained by exposing a liquid hydrogen bubble chamber to a pion beam from the Saelay proton synchrotron Saturne. The chamber had a diameter of 20 cm and a depth of 10 cm. There was no magnetic field. Two cameras, 15 em apart, were situated at 84 cm from the center- of the chamber. A triple quadrnpole lens looking at an internal target, and a bending magnet, defined the beam, whose momentum spread was less than 2%. The value of the momentum was measured by the wire-orbit method and by time of flight technique, and the computed momentum spread was checked by means of a Cerenkov counter. The pictures were scanned twice for all pion interactions. 0nly those events with primaries at most 3 ~ off from the mean beam direction and with vertices inside a well defined fiducial volume, were considered. All not obviously inelastic events were measured and computed by means of a Mercury Ferranti computer. The elasticity of the event was established by eoplanarity and angular correlation of the outgoing tracks. We checked that no bias was introduced for elastic events with dip angles for the scattering plane of less than 80 ~ and with cosines of the scattering angles in the C.M.S. of less than 0.95. Figs. 1 to 5 show the angular distributions for elastic scattering, for all events with dip angles for the scattering plane less than 80 ~ . The solid curves represent a best fit to the differential cross section. The ratio of charged inelastic to elastic events, was obtained by comparing the number of inelastic scatterings to the areas under the solid curves which give the number of elastic seatterings.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Measures of the differential effective sections $\pi ±p$ to 410 MeV and 490 MeV forwards

Banner, M. ; Detoeuf, J.F. ; Fayoux, M.L. ; et al.
Nuovo Cim.A 50 (1967) 431-448, 1967.
Inspire Record 1185325 DOI 10.17182/hepdata.896

Measurements of π±p elastic differential cross-sections have been performed in the forward direction, using a missing-mass spark chamber spectrometer. The films have been seanned by an automatic apparatus. A phase-shift analysis of the experimental data has been done, leading to three solutions. Various experiments are proposed in order to resolve the ambiguities.

4 data tables

No description provided.

No description provided.

No description provided.

More…

pi+- p differential cross sections at low energies.

Denz, H. ; Amaudruz, P. ; Brack, J.T. ; et al.
Phys.Lett.B 633 (2006) 209-213, 2006.
Inspire Record 699647 DOI 10.17182/hepdata.31620

Differential cross sections for pi- p and pi+ p elastic scattering were measured at five energies between 19.9 and 43.3 MeV. The use of the CHAOS magnetic spectrometer at TRIUMF, supplemented by a range telescope for muon background suppression, provided simultaneous coverage of a large part of the full angular range, thus allowing very precise relative cross section measurements. The absolute normalisation was determined with a typical accuracy of 5 %. This was verified in a simultaneous measurement of muon proton elastic scattering. The measured cross sections show some deviations from phase shift analysis predictions, in particular at large angles and low energies. From the new data we determine the real part of the isospin forward scattering amplitude.

12 data tables

Elastic PI- P cross section for incident kinetic energy 43.3 MeV for the rotated target data. Errors shown are statistical only.

Elastic PI- P cross section for incident kinetic energy 43.3 MeV. Errors shown are statistical only.

Elastic PI- P cross section for incident kinetic energy 37.1 MeV. Errors shown are statistical only.

More…

Precision pion proton elastic differential cross sections at energies spanning the Delta resonance.

Pavan, M.M. ; Brack, J.T. ; Duncan, F. ; et al.
Phys.Rev.C 64 (2001) 064611, 2001.
Inspire Record 554203 DOI 10.17182/hepdata.31782

A precision measurement of absolute pi+p and pi-p elastic differential cross sections at incident pion laboratory kinetic energies from T_pi= 141.15 to 267.3 MeV is described. Data were obtained detecting the scattered pion and recoil proton in coincidence at 12 laboratory pion angles from 55 to 155 degrees for pi+p, and six angles from 60 to 155 degrees for pi-p. Single arm measurements were also obtained for pi+p energies up to 218.1 MeV, with the scattered pi+ detected at six angles from 20 to 70 degrees. A flat-walled, super-cooled liquid hydrogen target as well as solid CH2 targets were used. The data are characterized by small uncertainties, ~1-2% statistical and ~1-1.5% normalization. The reliability of the cross section results was ensured by carrying out the measurements under a variety of experimental conditions to identify and quantify the sources of instrumental uncertainty. Our lowest and highest energy data are consistent with overlapping results from TRIUMF and LAMPF. In general, the Virginia Polytechnic Institute SM95 partial wave analysis solution describes our data well, but the older Karlsruhe-Helsinki PWA solution KH80 does not.

18 data tables

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and single arm pion detection. There is an additional systematic error of 1.1 PCT for PI+ beams which is not included in the errors shown in the table.

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and two arm pion detection. There is an additional systematic error of 1.3 PCT for PI+ beams which is not included in the errors shown in the table.

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and two arm pion detection. There is an additional systematic error of 1.3 PCT (1.6 PCT) for PI+ (PI-) beams which is not included in the errors shown in the table.

More…

Hidden Strangeness in the Proton? Determination of the Real Part of the Isospin Even - Forward Scattering Amplitude of Pion Nucleon Scattering at 54.3-{MeV}

Wiedner, U. ; Goring, K. ; Jaki, J. ; et al.
Phys.Rev.D 40 (1989) 3568-3581, 1989.
Inspire Record 287810 DOI 10.17182/hepdata.23079

The contradiction of the σ term of pion-nucleon scattering as deduced from the Karlsruhe-Helsinki phase shifts with the smaller value calculated by the chiral perturbation theory of QCD is well known. In an effort to clarify the discrepancy we have determined the real part of the isospin-even forward-scattering amplitude of pion-nucleon scattering at a pion energy Tπ=54.3 MeV by measurement of the elastic scattering of positive and negative pions on protons in the Coulomb-nuclear interference region. The deduced value is in agreement with the prediction of the Karlsruhe-Helsinki phase-shift analysis for that energy. The resulting large value of the σ term may be interpreted as being due to the influence of s¯s sea pairs even at large distances (small Q2) as previously suggested by the European Muon Collaboration measurement of deep-inelastic scattering of polarized muons on polarized protons.

1 data table

No description provided.


Determination of the Real Part of the Isospin Even Forward Scattering Amplitude of Pion Nucleon Scattering at 55-{MeV} as a Test of Low-energy Quantum Chromodynamics

Wiedner, U. ; Goring, K. ; Jaki, J. ; et al.
Phys.Rev.Lett. 58 (1987) 648-650, 1987.
Inspire Record 246624 DOI 10.17182/hepdata.20153

The real part of the isospin-even forward-scattering amplitude of pion-nucleon scattering has been determined at a pion energy of Tπ=55 MeV by measurement of the elastic scattering of positive and negative pions on protons within the Coulomb-nuclear interference region. The value confirms the prediction of the Karlsruhe-Helsinki phase-shift analysis for that energy. These phases have been used to determine the σ term of pion-nucleon scattering by means of dispersion relations, resulting in a value for σ which is in contradiction with chiral perturbation theory of QCD.

1 data table

PI- P cross sections normalised to the Coulomb cross section taken from the Karlesruhe-Helsinki phase shift analysis (R. Koch, E. Pietarinen (NP A336(80)331).


PI- P ELASTIC SCATTERING IN THE REGION OF THE X0 (957.6) THRESHOLD

Moissidis, P.G. ; Sarma, H.N.K. ; Carr, J. ; et al.
Nuovo Cim.A 75 (1983) 123-162, 1983.
Inspire Record 196214 DOI 10.17182/hepdata.8694

We present results from a high-momentum-resolution measurement of the π-p elastic differential and total cross-sections-at values of cos θ* between — 0.60 and 0.85 in the centre-of-mass system and at incident-beam momenta between 1.34GeV/c and 1.49 GeV/c—close to the X0 production threshold. There is no significant enhancement near the X0 production threshold. However, a small effect of ~ 3 standard deviations is present, having mass 1898.8 MeV and width ~5MeV, and appearing at an incident-pion momentum of 1435 MeV/c. In addition, a narrow ~ 5-standard-deviation effect atEc.m.= 1876 MeV appeared at an incident-pion momentum of 1389 MeV/c.

10 data tables

No description provided.

No description provided.

No description provided.

More…

Search for Narrow Baryons in $\pi^- p$ Elastic Scattering at Large Angles

The CERN-College de France-Ecole Poly collaboration Baillon, P. ; Barrelet, E. ; Benayoun, Maurice ; et al.
Phys.Lett.B 94 (1980) 533-540, 1980.
Inspire Record 153784 DOI 10.17182/hepdata.27177

Hoping to find resonant structures in the momentum dependence of π − p elastic scattering we have measured the differential cross section for this reaction at c.m. angles near 90°. An intense pion beam (≈ 10 7 π /s) has been used, together with a high incident momentum resolution (d P / P ≈ 2 × 10 −4 ), to scan the region of laboratory momenta from 5.75 to 13.02 GeV/ c (c.m. energy from 3.42 to 5.03 GeV). The sensitivity attained by the experiment is such that signals would have been seen corresponding to the formation of non-strange baryon resonances having width larger than ≈ 0.1 MeV and elasticity larger than a few per cent. Within these limits no resonances were sighted.

1 data table

ENERGY SCAN IN BINS OF D(PLAB)/PLAB OF 5*10**-4 AT FOUR FIXED ANGLES (COS(THETA) = -0.4 TO 0.4).


ELASTIC SCATTERING AND OMEGA MESON PRODUCTION NEAR THE THRESHOLD OF PI- P ---> OMEGA N

Karami, H. ; Carr, J. ; Debenham, N.C. ; et al.
Nucl.Phys.B 154 (1979) 503-518, 1979.
Inspire Record 146573 DOI 10.17182/hepdata.34745

Measurements are reported of the differential cross section for the reaction π − +p→ ω +n from threshold to a final-state c.m. momentum P ∗ of 200 MeV /c . The previously reported fall in total cross section σ/P ∗ below about 100 MeV/ c is again seen. The differential cross section remains close to isotropic over the entire range. A paralle experiment on the variation in the elastic differential cross section across the threshold shows evidence of this threshold. The elastic data cover a range of incident moments from 1010 to 1180 MeV/ c in steps of 5 MeV/ c .

4 data tables

CROSS SECTION DEPENDENCE ON FINAL STATE CENTRE OF MASS MOMENTUM.

ANGULAR DISTRIBUTIONS ARE ALMOST ISOTROPIC.

LEGENDRE POLYNOMIAL COEFFICIENTS NORMALIZED SUCH THAT SIG = 4*PI*LEG(L=0).

More…

CUSP IN PI- P ELASTIC SCATTERING AT THE ETA THRESHOLD

Sarma, H.N.K. ; Binnie, D.M. ; Carr, J. ; et al.
Nucl.Phys.B 161 (1979) 1-13, 1979.
Inspire Record 147683 DOI 10.17182/hepdata.34612

We present results from a high momentum resolution measurement of the π − p elastic differential cross section near the η production threshold. By analysing the cusp discontinuity in the elastic cross section we deduce the non-spin-flip elastic amplitude and compare it with solutions from phase-shift analyses.

601 data tables

No description provided.

No description provided.

No description provided.

More…