The elliptic, triangular, quadrangular and pentagonal anisotropic flow coefficients for $\pi^{\pm}$, $\mathrm{K}^{\pm}$ and p+$\overline{\mathrm{p}}$ in Pb-Pb collisions at $\sqrt{s_\mathrm{{NN}}} = 2.76$ TeV were measured with the ALICE detector at the Large Hadron Collider. The results were obtained with the Scalar Product method, correlating the identified hadrons with reference particles from a different pseudorapidity region. Effects not related to the common event symmetry planes (non-flow) were estimated using correlations in pp collisions and were subtracted from the measurement. The obtained flow coefficients exhibit a clear mass ordering for transverse momentum ($p_{\mathrm{T}}$) values below $\approx$ 3 GeV/$c$. In the intermediate $p_{\mathrm{T}}$ region ($3 < p_{\mathrm{T}} < 6$ GeV/$c$), particles group at an approximate level according to the number of constituent quarks, suggesting that coalescence might be the relevant particle production mechanism in this region. The results for $p_{\mathrm{T}} < 3$ GeV/$c$ are described fairly well by a hydrodynamical model (iEBE-VISHNU) that uses initial conditions generated by A Multi-Phase Transport model (AMPT) and describes the expansion of the fireball using a value of 0.08 for the ratio of shear viscosity to entropy density ($\eta/s$), coupled to a hadronic cascade model (UrQMD). Finally, expectations from AMPT alone fail to quantitatively describe the measurements for all harmonics throughout the measured transverse momentum region. However, the comparison to the AMPT model highlights the importance of the late hadronic rescattering stage to the development of the observed mass ordering at low values of $p_{\mathrm{T}}$ and of coalescence as a particle production mechanism for the particle type grouping at intermediate values of $p_{\mathrm{T}}$ for all harmonics.
pion <uQ>2 as a function of pT in pp collision.
kaon <uQ>2 as a function of pT in pp collision.
proton <uQ>2 as a function of pT in pp collision.
At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the Quark-Gluon Plasma (QGP) [1]. Such an extreme state of strongly-interacting QCD (Quantum Chromo-Dynamics) matter is produced in the laboratory with high-energy collisions of heavy nuclei, where an enhanced production of strange hadrons is observed [2-6]. Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions [7], is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions [8,9]. Yet, enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity pp collisions. We find that the integrated yields of strange and multi-strange particles relative to pions increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with p-Pb collision results [10,11] indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.
$K^{0}_{S}$ transverse momentum spectrum: V0M Class I (pp at $\sqrt{s}=7$ TeV).
$K^{0}_{S}$ transverse momentum spectrum: V0M Class II (pp at $\sqrt{s}=7$ TeV).
$K^{0}_{S}$ transverse momentum spectrum: V0M Class III (pp at $\sqrt{s}=7$ TeV).
The inclusive J/$\psi$ production has been studied in Pn-Pb and pp collisions at the centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}=5.02$ TeV, using the ALICE detector at the CERN LHC. The J/$\psi$ meson is reconstructed, in the centre-of-mass rapidity interval $2.5<y<4$ and in the transverse-momentum range $p_{\rm T}<12$ GeV/$c$, via its decay to a muon pair. In this Letter, we present results on the inclusive J/$\psi$ cross section in pp collisions at $\sqrt{s}=5.02$ TeV and on the nuclear modification factor $R_{\rm AA}$. The latter is presented as a function of the centrality of the collision and, for central collisions, as a function of the transverse momentum $p_{\rm T}$ of the J/$\psi$. The measured $R_{\rm AA}$ values indicate a suppression of the J/$\psi$ in nuclear collisions and are then compared to our previous results obtained in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV. The ratio of the $R_{\rm AA}$ values at the two energies is also computed and compared to calculations of statistical and dynamical models. The numerical value of the ratio for central events (0-10\% centrality) is $1.17 \pm 0.04 {\rm{(stat)}}\pm 0.20 {\rm{(syst)}}$. In central events, as a function of $p_{\rm T}$, a slight increase of $R_{\rm AA}$ with collision energy is visible in the region $2<p_{\rm T}<6$ GeV/$c$. Theoretical calculations provide a good description of the measurements, within uncertainties.
Differential cross section ${\rm d}^2\sigma^{\rm pp}_{{\rm J}/\psi}/{\rm d}y{\rm d}p_{\rm T}$ for inclusive J/$\psi$ cross section in pp collisions at $\sqrt{s}=5.02$ TeV. The first uncertainty is statistical, the second is the uncorrelated systematic, while the third one is a $p_{\rm T}$-correlated systematic uncertainty.
The nuclear modification factor for inclusive J/$\psi$ production, as a function of centrality, at $\sqrt{s_{\rm NN}}=5.02$ TeV. The widths of the centrality classes used are 2% from 0 to 12%, then 3% up to 30% and 5% for more peripheral collisions. The first uncertainty is statistical, the second is the uncorrelated systematic, while the third one is a centrality-correlated systematic uncertainty.
Centrality dependence (with 10% width centrality classes) of the inclusive J/$\psi$ $R_{\rm AA}$ for $0.3<p_{\rm T}<8$ GeV/$c$. The first uncertainty is statistical, the second is the uncorrelated systematic, while the third one is a centrality-correlated systematic uncertainty.
We present measurements of two-particle correlations with neutral pion trigger particles of transverse momenta $8 < p_{\mathrm{T}}^{\rm trig} < 16~\mathrm{GeV}/c$ and associated charged particles of $0.5 < p_{\mathrm{T}}^{\rm assoc} < 10~\mathrm{GeV}/c$ versus the azimuthal angle difference $\Delta\varphi$ at midrapidity in pp and central Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV with ALICE. The new measurements exploit associated charged hadrons down to $0.5~\mathrm{GeV}/c$, which significantly extends our previous measurement that only used charged hadrons above $3~\mathrm{GeV}/c$. After subtracting the contributions of the flow background, $v_2$ to $v_5$, the per-trigger yields are extracted for $|\Delta\varphi|<0.7$ on the near and for $|\Delta\varphi-\pi| < 1.1$ on the away side. The ratio of per-trigger yields in Pb--Pb to those in pp collisions, $I_{\mathrm{AA}}$, is measured on the near and away side for the $0$--$10$\% most central Pb--Pb collisions. On the away side, the per-trigger yields in Pb--Pb are strongly suppressed to the level of $I_{\mathrm{AA}} \approx 0.6$ for $p_{\mathrm{T}}^{\rm assoc} > 3~\mathrm{GeV}/c$, while with decreasing momenta an enhancement develops reaching about $5$ at low $p_{\mathrm{T}}^{\rm assoc}$. On the near side, an enhancement of $I_{\mathrm{AA}}$ between $1.2$ at the highest to $1.8$ at the lowest $p_{\mathrm{T}}^{\rm assoc}$ is observed. The data are compared to parton-energy-loss predictions of the JEWEL and AMPT event generators, as well as to a perturbative QCD calculation with medium-modified fragmentation functions. All calculations qualitatively describe the away-side suppression at high $p_{\mathrm{T}}^{\rm assoc}$. Only AMPT captures the enhancement at low $p_{\mathrm{T}}^{\rm assoc}$, both on the near and away side. However, it also underpredicts $I_{\mathrm{AA}}$ above $5$ GeV/$c$, in particular on the near-side.
Charged-particle associated yields relative to $\pi^{0}$ trigger particles versus $\Delta\varphi$ in pp collisions at $\sqrt{s_{NN}}$=2.76 TeV. The $\pi^{0}$ trigger momentum range is $8< p_{T}^{trig} < 16~GeV/c$, and associated charged particle ranges are $0.5 < p_{T}^{assoc} < 1$, $1 < p_{T}^{assoc} < 2$, $2 < p_{T}^{assoc} < 4$ and $4 < p_{T}^{assoc} < 6~GeV/c$.
Charged-particle associated yields relative to $\pi^{0}$ trigger particles versus $\Delta\varphi$ in Pb-Pb collisions at $\sqrt{s_{NN}}$=2.76 TeV. The $\pi^{0}$ trigger momentum range is $8< p_{T}^{trig} < 16~GeV/c$, and associated charged particle ranges are $0.5 < p_{T}^{assoc} < 1$, $1 < p_{T}^{assoc} < 2$, $2 < p_{T}^{assoc} < 4$ and $4 < p_{T}^{assoc} < 6~GeV/c$.
Per-trigger yield modification, $I_{\rm AA}$, on the near side with trigger $\pi^{0}$ particle at $8 < p_{T}^{trig} < 16~GeV/c$ for $0$-$10$$\%$ Pb-Pb collisions at $\sqrt{s_{NN}}$= 2.76 TeV.
The production of beauty hadrons was measured via semi-leptonic decays at mid-rapidity with the ALICE detector at the LHC in the transverse momentum interval $1<p_{\rm T}<8$ GeV/$c$ in minimum-bias p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV and in $1.3<p_{\rm T}<8$ GeV/$c$ in the 20% most central Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV. The pp reference spectra at $\sqrt{s}=5.02$ TeV and $\sqrt{s}=2.76$ TeV, needed for the calculation of the nuclear modification factors $R_{\rm pPb}$ and $R_{\rm PbPb}$, were obtained by a pQCD-driven scaling of the cross section of electrons from beauty-hadron decays measured at $\sqrt{s}=7$ TeV. In the $p_{\rm T}$ interval $3<p_{\rm T}<8$ GeV/$c$ a suppression of the yield of electrons from beauty-hadron decays is observed in Pb-Pb compared to pp collisions. Towards lower $p_{\rm T}$, the $R_{\rm PbPb}$ values increase with large systematic uncertainties. The $R_{\rm pPb}$ is consistent with unity within systematic uncertainties and is well described by theoretical calculations that include cold nuclear matter effects in p-Pb collisions. The measured $R_{\rm pPb}$ and these calculations indicate that cold nuclear matter effects are small at high transverse momentum also in Pb-Pb collisions. Therefore, the observed reduction of $R_{\rm PbPb}$ below unity at high $p_{\rm T}$ may be ascribed to an effect of the hot and dense medium formed in Pb-Pb collisions.
Invariant cross section of electrons from beauty-hadron decays as a function of transverse momentum in minimum-bias p--Pb collisions in the rapidity interval $-1.06 < y_{\rm cms} < 0.14$. The systematic uncertainties do not include an additional p--Pb normalisation uncertainty of 3.7%.
Invariant yield of electrons from beauty-hadron decays as a function of transverse momentum in 20% most central Pb--Pb collisions.
Nuclear modification factor $R_{\text{pA}}$ of electrons from beauty-hadron decays as a function of transverse momentum for minimum-bias p--Pb collisions in the rapidity interval $-1.06 < y_{\rm cms} < 0.14$. The systematic uncertainties do not include a global normalisation uncertainty of 5.1%.
In two-particle angular correlation measurements, jets give rise to a near-side peak, formed by particles associated to a higher $p_{\mathrm{T}}$ trigger particle. Measurements of these correlations as a function of pseudorapidity ($\Delta\eta$) and azimuthal ($\Delta\varphi$) differences are used to extract the centrality and $p_{\mathrm{T}}$ dependence of the shape of the near-side peak in the $p_{\mathrm{T}}$ range $1 < p_{\mathrm{T}} <$ 8 GeV/c in Pb-Pb and pp collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV. A combined fit of the near-side peak and long-range correlations is applied to the data and the peak shape is quantified by the variance of the distributions. While the width of the peak in the $\Delta\varphi$ direction is almost independent of centrality, a significant broadening in the $\Delta\eta$ direction is found from peripheral to central collisions. This feature is prominent for the low $p_{\mathrm{T}}$ region and vanishes above 4 GeV/c. The widths measured in peripheral collisions are equal to those in pp in the $\Delta\varphi$ direction and above 3 GeV/c in the $\Delta\eta$ direction. Furthermore, for the 10\% most central collisions and $1 < p_{\mathrm{T, assoc}} <$ 2 GeV/c, $1 < p_{\mathrm{T, trig}} <$ 3 GeV/c a departure from a Gaussian shape is found: a depletion develops around the centre of the peak. The results are compared to AMPT model simulations as well as other theoretical calculations indicating that the broadening and the development of the depletion is connected to the strength of radial and longitudinal flow.
Variance of the near-side jet peak from a generalized Gaussian fit.
Variance of the near-side jet peak from a generalized Gaussian fit.
Variance of near-side peak in the 0-10% centrality bin divided by the variance of the near-side peak in the 50-80% centrality bin.
The measurement of two-particle angular correlations is a powerful tool to study jet quenching in a $p_{\mathrm{T}}$ region inaccessible by direct jet identification. In these measurements pseudorapidity ($\Delta\eta$) and azimuthal ($\Delta\varphi$) differences are used to extract the shape of the near-side peak formed by particles associated to a higher $p_{\mathrm{T}}$ trigger particle ($1 < p_{\mathrm{T, trig}} <$ 8 GeV/c). A combined fit of the near-side peak and long-range correlations is applied to the data allowing the extraction of the centrality evolution of the peak shape in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV. A significant broadening of the peak in the $\Delta\eta$ direction at low $p_{\mathrm{T}}$ is found from peripheral to central collisions, which vanishes above 4 GeV/c, while in the $\Delta\varphi$ direction the peak is almost independent of centrality. For the 10% most central collisions and $1 < p_{\mathrm{T, assoc}} <$ 2 GeV/c, $1 < p_{\mathrm{T, trig}} <$ 3 GeV/c a novel feature is observed: a depletion develops around the centre of the peak. The results are compared to pp collisions at the same centre of mass energy and to AMPT model simulations. The comparison to the investigated models suggests that the broadening and the development of the depletion is connected to the strength of radial and longitudinal flow.
Variance of the near-side jet peak from a generalized Gaussian fit.
Variance of the near-side jet peak from a generalized Gaussian fit.
Variance of near-side peak in the 0-10% centrality bin divided by the variance of the near-side peak in the 50-80% centrality bin.
Electrons from heavy-flavour hadron decays (charm and beauty) were measured with the ALICE detector in Pb-Pb collisions at a centre-of-mass of energy $\sqrt{s_{\rm NN}}=2.76$ TeV. The transverse momentum ($p_{\rm T}$) differential production yields at mid-rapidity were used to calculate the nuclear modification factor $R_{\rm AA}$ in the interval $3<p_{\rm T}< 18$ GeV/$c$. The $R_{\rm AA}$ shows a strong suppression compared to binary scaling of pp collisions at the same energy (up to a factor of 4) in the 10% most central Pb-Pb collisions. There is a centrality trend of suppression, and a weaker suppression (down to a factor of 2) in semi-peripheral (50-80%) collisions is observed. The suppression of electrons in this broad $p_{\rm T}$ interval indicates that both charm and beauty quarks lose energy when they traverse the hot medium formed in Pb-Pb collisions at LHC.
Pb-Pb collision centrality 0-10%.
Pb-Pb collision centrality 10-20%.
Pb-Pb collision centrality 20-30%.
The W and Z boson production was measured via the muonic decay channel in proton-lead collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at the Large Hadron Collider with the ALICE detector. The measurement covers backward ($-4.46 < y_{\rm cms} < -2.96$) and forward ($2.03 < y_{\rm cms} < 3.53$) rapidity regions, corresponding to Pb-going and p-going directions, respectively. The Z-boson production cross section, with dimuon invariant mass of $60<m_{\mu\mu}<120$ GeV/$c^2$ and muon transverse momentum ($p_{\rm T}^\mu$) larger than 20 GeV/$c$, is measured. The production cross section and charge asymmetry of muons from W-boson decays with $p_{\rm T}^\mu>10$ GeV/$c$ are determined. The results are compared to theoretical calculations both with and without including the nuclear modification of the parton distribution functions. The W-boson production is also studied as a function of the collision centrality: the cross section of muons from W-boson decays is found to scale with the average number of binary nucleon-nucleon collisions within uncertainties.
Z-boson production cross section in the dimuon decay channel at backward and forward rapidities measured in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The first uncertainty is statistical, the second is systematic.
Cross section of $\mu^{+}$ from W$^{+}$ boson decay at backward and forward rapidities measured in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The first uncertainty is statistical, the second is systematic.
Cross section of $\mu^{-}$ from W$^{-}$ boson decay at backward and forward rapidities measured in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The first uncertainty is statistical, the second is systematic.
Two-particle angular correlations were measured in pp collisions at $\sqrt{s} = 7$ TeV for pions, kaons, protons, and lambdas, for all particle/anti-particle combinations in the pair. Data for mesons exhibit an expected peak dominated by effects associated with mini-jets and are well reproduced by general purpose Monte Carlo generators. However, for baryon-baryon and anti-baryon--anti-baryon pairs, where both particles have the same baryon number, a near-side anti-correlation structure is observed instead of a peak. This effect is interpreted in the context of baryon production mechanisms in the fragmentation process. It currently presents a challenge to Monte Carlo models and its origin remains an open question.
$\Delta\eta$ integrated projections of correlation functions for combined pairs of $\rm pp+\overline{p}\overline{p}$, $\rm p\Lambda+\overline{p}\overline{\Lambda}$, and $\Lambda\Lambda+\overline{\Lambda}\overline{\Lambda}$.
$\Delta\eta$ integrated projections of correlation functions for combined pairs of $\rm p\overline{p}$, $\rm p\overline{\Lambda}+\overline{p}\Lambda$, and $\Lambda\overline{\Lambda}$.
$\Delta\eta$ integrated projections of correlation functions for combined pairs of $\rm pp+\overline{p}\overline{p}$ for two transverse momentum intervals (a) $0.5 < p_{\rm T} < 1.25$ GeV/$c$ and (b) $1.25 < p_{\rm T} < 2.5$ GeV/$c$.