Date

Elastic scattering and polarisation in 3.0 and 3.6 GeV/c antiproton-proton collisions

Escoubès, B. ; Fedrighini, A. ; Goldschmidt-Clermont, Y. ; et al.
Phys.Lett. 5 (1963) 132-136, 1963.
Inspire Record 1389108 DOI 10.17182/hepdata.751

None

3 data tables match query

No description provided.

No description provided.

No description provided.


K+ p Interactions Near 3-GeV/c. 2. Baryon Resonance Production

Musgrave, B. ; Peeters, P. ; Schreiner, P. ; et al.
Nucl.Phys.B 87 (1975) 365-398, 1975.
Inspire Record 1720 DOI 10.17182/hepdata.1112

Baryon resonance production in quasi-two-body reactions has been studied for the channels K + p→K°p π + , K + n π + and K + p π ° at beam momenta of 2.53, 2.76 and 3.20 GeV/ c . The production cross sections, four-momentum transfer distributions and density matrix elements are given for the Δ(1236), N ∗ (1400), N ∗ (1500) and N ∗ (1680) states. The reaction K + p→K° Δ ++ (1236) is compared to the line reversed reaction K − n → K °Δ − and the charge-exchange SU(3) sum rule for pseudo-scalar meson plus Δ(1236) is tested.

6 data tables match query

No description provided.

No description provided.

No description provided.

More…

Elastic Scattering and Cross Sections in Antiproton-Proton Interactions at 3.3 and 3.7 BeV/c

Ferbel, T. ; Firestone, A. ; Sandweiss, J. ; et al.
Phys.Rev. 137 (1965) B1250-B1255, 1965.
Inspire Record 944963 DOI 10.17182/hepdata.466

The elastic, the pion-production, and the multipion-annihilation cross sections for antiproton-proton interactions at 3.28 and 3.66 BeV/c incident antiproton momenta have been measured. A comparison of the elastic interactions at 3.28 BeV/c with a purely-absorbing disc optical model gave a best value for the radius of interaction of 1.3 F. The real part of the forward scattering amplitude has been found to be less than 20% of the imaginary part. A study of the asymmetries in double elastic scatters yielded a value for a polarizing power of the hydrogen consistent with zero when averaged over production angles.

6 data tables match query

No description provided.

More…

Elastic scattering and single-pion production in proton proton interactions at 6.92 bev/c

Alexander, G. ; Carmel, Z. ; Eisenberg, Y. ; et al.
Phys.Rev. 173 (1968) 1322-1329, 1968.
Inspire Record 55956 DOI 10.17182/hepdata.5540

Elastic scattering and single-pion production in pp collisions at 6.92 BeVc were studied in the BNL 80-in. hydrogen bubble chamber. Partial cross sections for the different final states are given. The reaction pp→nN1238*(pπ+) with σ=1.9±0.3 mb is analyzed and is in agreement with the modified one-pion-exchange model. Single-pion production can be explained as due mainly to two channels: (a) pp→N1238*(pπ+)n, and (b) pp→p(nπ+) or pp→p(pπ0), where the (nπ+) and (pπ0) pairs are in an I=12 state.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of Particle and anti-Particle Elastic Scattering on Protons Between 6-GeV and 14-GeV

Brandenburg, G.W. ; Carnegie, R.K. ; Cashmore, R.J. ; et al.
Phys.Lett.B 58 (1975) 367-370, 1975.
Inspire Record 100639 DOI 10.17182/hepdata.5543

Differential cross sections in the t -range between 0.02 and 1.5 GeV 2 have been measured for the elastic scattering of particles and antiparticles on protons at 6.4, 10.4 and 14 GeV for K ± p and 10.4 GeV for π ± p and p ± p . Large statistics have been achieved and systematic uncertainties have been minimized. The relative systematic uncertainty between particle and antiparticle data is less than 0.5%. Accurate measurements of the position of the first crossover between particle and antiparticle differential cross sections have been performed. As the energy increases from 6.4 to 14 GeV the K ± p crossover moves to smaller values by 0.010 GeV 2 with a statistical error of 0.006 GeV 2 and a systematic uncertainty of 0.005 GeV 2 . The crossover positions at 10.4 GeV for π ± , K ± and p ± scale approximately with the interaction radii.

10 data tables match query

CROSSOVER POSITION IS -T = 0.209 +- 0.004 (DSYS = 0.003) GEV**2.

CROSSOVER POSITION IS -T = 0.209 +- 0.004 (DSYS = 0.003) GEV**2. SMALL ANGLE CROSS SECTIONS IN SMALLER T-BINS.

CROSSOVER POSITION IS -T = 0.211 +- 0.004 (DSYS = 0.0025) GEV**2.

More…

A Measurement of the Energy Dependence of Elastic $\pi p$ and $p p$ Scattering at Large Angles

Jenkins, K.A. ; Price, L.E. ; Klem, R. ; et al.
Phys.Rev.Lett. 40 (1978) 425, 1978.
Inspire Record 6233 DOI 10.17182/hepdata.3359

We have measured π±p and pp elastic differential cross sections in the range |cosθc.m.|<0.35 for incident momenta from 2 to 9.7 GeV/c for π−p and pp and from 2 to 6.3 GeV/c for π+p. We find that the fixed-c.m.-angle πp differential cross sections cannot be described as simple functions of s. The data are compared to the energy and angular dependence predicted by the constituent model of Gunion, Brodsky, and Blankenbecler.

56 data tables match query

No description provided.

No description provided.

No description provided.

More…

Elastic scattering, pion production, and annihilation into pions in antiproton-proton interactions at 5.7 GeV/c

Böckmann, K. ; Nellen, B. ; Paul, E. ; et al.
Nuovo Cim.A 42 (1966) 954-996, 1966.
Inspire Record 1185317 DOI 10.17182/hepdata.1061

An extensive investigation of antiproton-proton interactions at 5.7 GeV/c without strange-particle production was carried out using a hydrogen bubble chamber. Cross-sections for different channels are given and discussed. The reliability of the analysis was checked using artificially generated events. The cross-sections for elastic scattering, for all processes involving annihilation, and for all other inelastic processes are respectively σel=(16.3±0.6)mb,σannlbil=(22.5±2.0)mb, σinel=(24.8±2.0)mb. TheN * 1:38 is present both in the single and multiple pion production channels. For the reaction MediaObjects/11539_2007_Article_BF02720569_f1.jpg a cross-section of (1.05±0.21) mb was obtained. Cross-sections forN * 1238 production in other channels are also given. Some indication of the presence ofI=1/2 isobars was found in the nucleon-pion and the nucleon-two-pion systems. The inelastic nonannihilation reactions were found to be strongly peripheral. The one-pion exchange model including either a form factor or corrections for absorption was applied to the reaction MediaObjects/11539_2007_Article_BF02720569_f2.jpg . Neither version of the model could correctly account for all features of the reaction. The average number of pions in the annihilation was found to be 7.3±0.6. The presence of an asymmetry in the angular distribution of the charged pions was confirmed at this energy; it is due mostly to high-energy pions. The production of ρ and ω mesons was observed in various annihilation channels. Rates of up to 80% for ρ production and up to 15% for ω production were obtained by fitting phase-space and Breit-Wigner curves to the effective-mass distributions of different channels.

5 data tables match query

No description provided.

More…

pi+ proton, pi- proton and pp elastic scattering at 8.5, 12.4 and 18.4 GeV/c

Harting, D. ; Blackall, P. ; Elsner, B. ; et al.
Nuovo Cim. 38 (1965) 60, 1965.
Inspire Record 49759 DOI 10.17182/hepdata.1110

Approximately 60 000 events have been collected in a spark chamber experiment at the CERN Proton Synchrotron which studied elastic diffraction scattering of π--p and p-p at incident momenta of 8.5, 12.4 and 18.4 GeV/c and of π+-p at 8.5 and 12.4 GeV/c. Magnetic analysis of the incoming and diffraction scattered particle, together with measurement of all angles, permitted each event to be determined as elastic subject to three constraints, so that the inelastic background was rejected with. high efficiency, even at the larger momentum, transfers. Much of the data have been processed by the CERN Automatic Flying-Spot DigitizerHPD. A detailed description of the experimental technique and of the methods of analysis is given. The results, together with data from lower energies, confirm the remarkable energy-independence of the shape of the pion-proton diffraction scattering peak up to |t| = 1.5 (GeV/c)2, wheret is the square of the four-momentum transfer, over a range of pion energies from 2 to 18 GeV. Proton-proton scattering does however appear to show a shrinking diffraction peak. In general, the data agree with other experiments using both counter and bubble chamber techniques, but some differences do appear. During the experiment, data were taken which set an upper limit of 2·102 μb/(GeV/c)2 on the differential elastic cross-section dσ/dt over a range of |t| from 20.9 to 23.4 (GeV/c)2 at 13.4 GeV/c incident pion momentum.

18 data tables match query

'1'. '2'. '3'. '4'.

More…

Elastic scattering and two-body annihilations at 5 gev/c

Eide, A. ; Lehmann, P. ; Lundby, A. ; et al.
Nucl.Phys.B 60 (1973) 173-220, 1973.
Inspire Record 83926 DOI 10.17182/hepdata.7885

We present results of measurements of K ± p and p p elastic scattering and of the annihilation reactions p p →π + π − and p p → K + K − at an incident laboratory momentum of 5 GeV/ c . Nearly complete angular distributions were obtained. Results are also presented for π -meson proton elastic scattering in the momentum transfer ranges 2 < − t < 8 (GeV/ c ) 2 (for π + ) and 0.16 < − t < 7 (GeV/ c ) 2 (for π − ). All measurements were done in one experimental geometry. The measured differential cross sections range from 10 to 10 −5 mb/(GeV/ c ) 2 .

14 data tables match query

-U = T + 8.486 GEV**2.

THE DATA FOR -T = 7.31 TO 8.45 GEV**2 WERE NORMALIZED TO OTHER EXPERIMENTS.

-U = T + 8.304 GEV**2.

More…

Measurement of the Real Part of the Forward Amplitude in K- n and K+ n Elastic Scattering at 10-GeV/c and a New K+- n Dispersion Relation

Baillon, P. ; Declais, Y. ; Ferro-Luzzi, M. ; et al.
Nucl.Phys.B 134 (1978) 31-48, 1978.
Inspire Record 122470 DOI 10.17182/hepdata.35130

The differential cross section in the very forward direction has been measured for K − and K + scattering (break-up and coherent) on a deuterium target at an incident momentum of 10 GeV/ c . From these measurements and using a model for the scattering and re-scattering effects in deuterium, we have exploited the Coulomb-nuclear interference to deduce the real part of the K ± n scattering amplitude at a momentum transfer t = 0. The measurements are the first ever obtained for the K + n reaction and the first at this energy for the K − n reaction. A comparison has been made between our results and those predicted from dispersion relations. A new dispersion-relation fit including all the existing K ± n values at different energies has been performed.

1 data table match query

FROM FIT TO D(SIG)/DT OVER -T=0.0018 TO 0.074 GEV**2 ALLOWING FOR COULOMB SCATTERING, DOUBLE SCATTERING, INTERFERENCES AND FERMI MOTION. CORRELATION BETWEEN SLOPE AND RE(AMP)/IM(AMP) IS REFLECTED IN THE GIVEN SYSTEMATIC E RRORS.