A search for charged-lepton-flavour violating $\mu\tau qt$ ($q=u,c$) interactions is presented, considering both top-quark production and decay. The data analysed correspond to 140 $\textrm{fb}^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}= $13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The analysis targets events containing two muons with the same electric charge, a hadronically decaying $\tau$-lepton and at least one jet, with exactly one $b$-tagged jet, produced by a $\mu\tau qt$ interaction. Agreement with the Standard Model expectation within $1.6\sigma$ is observed, and limits are set at the 95% CL on the charged-lepton-flavour violation branching ratio of $\mathcal{B}(t \to \mu\tau q) < 8.7 \times 10^{-7}$. An Effective Field Theory interpretation is performed yielding 95% CL limits on Wilson coefficients, dependent on the flavour of the associated light quark and the Lorentz structure of the coupling. These range from $|c_{\mathsf{lequ}}^{3(2313)}| / \Lambda^{2} < 0.10\textrm{ TeV}^{-2}$ for $\mu\tau ut$ to $|c_{\mathsf{ lequ}}^{1(2323)}| / \Lambda^{2} < 1.8\textrm{ TeV}^{-2}$ for $\mu\tau ct$. An additional interpretation is performed for scalar leptoquark production inducing charged lepton flavour violation, with fixed inter-generational couplings. Upper limits on leptoquark coupling strengths are set at the 95% CL, ranging from $\lambda^{\textrm{LQ}} = $1.3 to $\lambda^{\textrm{LQ}} = $3.7 for leptoquark masses between 0.5 and 2.0 TeV.
Observed event yields in $\textrm{CR}t\bar{t}\mu$ compared with pre-fit expectations from Monte Carlo simulations, as a function of the scalar sum of lepton and jet transverse momenta, $H_{\mathrm{T}}$. The last bin includes overflow events. `Signal (prod.)' and `Signal (dec.)' refer to the single-top-quark production and top-quark pair decay signal contributions, respectively. The pre-fit signal yield represents all Wilson coefficients set to 0.1 simultaneously for a new physics scale of $\Lambda=1$ TeV.
Observed event yields in $\textrm{CR}t\bar{t}\mu$ compared with post-fit expectations from Monte Carlo simulations, as a function of the scalar sum of lepton and jet transverse momenta, $H_{\mathrm{T}}$. The last bin includes overflow events. `Signal (prod.)' and `Signal (dec.)' refer to the single-top-quark production and top-quark pair decay signal contributions, respectively.
Observed event yields in $\textrm{SR}$ compared with pre-fit expectations from Monte Carlo simulations, as a function of the scalar sum of lepton and jet transverse momenta, $H_{\mathrm{T}}$. The last bin includes overflow events. `Signal (prod.)' and `Signal (dec.)' refer to the single-top-quark production and top-quark pair decay signal contributions, respectively. The pre-fit signal yield represents all Wilson coefficients set to 0.1 simultaneously for a new physics scale of $\Lambda=1$ TeV.
The first search for soft unclustered energy patterns (SUEPs) is performed using an integrated luminosity of 138 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}$ = 13 TeV collected in 2016-2018 by the CMS detector at the LHC. Such SUEPs are predicted by Hidden Valley models with a new, confining force with a large 't Hooft coupling. In events with boosted topologies, selected by high-threshold hadronic triggers, the multiplicity and sphericity of clustered tracks are used to reject the background from standard model quantum chromodynamics. With no observed excess of events over the standard model expectation, limits are set on the cross section for production via gluon fusion of a scalar mediator with SUEP-like decays.
The number of observed events as a function of the number of tracks in the SUEP candidate, for all CRs (A–H) and the SR, as well as two signal samples. The three figures correspond to contiguous $S_{boosted}^{SUEP}$ ranges. The VR is not used in the fit so the estimation comes from the observed values in the control regions. For all other regions and bins, the post-fit values for a background-only fit are shown.
The observed exclusions for the nominal $\sigma$ cross section in the plane of $m_{\phi}$ and $T_D$, for various $m_S$ values, for the case $m_{A'}=1.0$ GeV ($A' \rightarrow \pi^+\pi^-$ with $\mathcal{BR}=100\%$).
The expected exclusions for the nominal $\sigma$ cross section in the plane of $m_{\phi}$ and $T_D$, for various $m_S$ values, for the case $m_{A'}=1.0$ GeV ($A' \rightarrow \pi^+\pi^-$ with $\mathcal{BR}=100\%$).
The production of single top quarks and top antiquarks via the $t$-channel exchange of a virtual $W$ boson is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV at the LHC using $140\,\mathrm{fb^{-1}}$ of ATLAS data. The total cross-sections are determined to be $\sigma(tq)=137^{+8}_{-8}\,\mathrm{pb}$ and $\sigma(\bar{t}q)=84^{+6}_{-5}\,\mathrm{pb}$ for top-quark and top-antiquark production, respectively. The combined cross-section is found to be $\sigma(tq+\bar{t}q)=221^{+13}_{-13}\,\mathrm{pb}$ and the cross-section ratio is $R_{t}=\sigma(tq)/\sigma(\bar{t}q)=1.636^{+0.036}_{-0.034}$. The predictions at next-to-next-to-leading-order in quantum chromodynamics are in good agreement with these measurements. The predicted value of $R_{t}$ using different sets of parton distribution functions is compared with the measured value, demonstrating the potential to further constrain the functions when using this result in global fits. The measured cross-sections are interpreted in an effective field theory approach, setting limits at the 95% confidence level on the strength of a four-quark operator and an operator coupling the third quark generation to the Higgs boson doublet: $-0.37 < C_{Qq}^{3,1}/\Lambda^2 < 0.06$ and $-0.87 < C_{\phi Q}^{3}/\Lambda^2 < 1.42$. The constraint $|V_{tb}|>0.95$ at the 95% confidence level is derived from the measured value of $\sigma(tq+\bar{t}q)$. In a more general approach, pairs of CKM matrix elements involving top quarks are simultaneously constrained, leading to confidence contours in the corresponding two-dimensional parameter spaces.
The 17 variables used for the training of the NN ordered by their discriminating power. The jet that is not \(b\)-tagged is referred to as the untagged jet. The charged lepton is denoted \(\ell\). The sphericity tensor \(S^{\alpha\beta}\) used to define the sphericity \(S\) is formed with the three-momenta \(\vec{p}_i\) of the reconstructed objects, namely the jets, the charged lepton and the reconstructed neutrino. The tensor is given by \(S^{\alpha\beta}=\frac{\sum_i p_i^\alpha p_i^\beta}{\sum_i |\vec{p}_i|^2}\) where \(\alpha\) and \(\beta\) correspond to the spatial components $x$, $y$ and $z$.
The impact of different groups of systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\), \(\sigma(tq + \bar t q)\) and \(R_t\), given in %.
The impact of the eight most important systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\) and \(\sigma(tq + \bar t q)\), given in %. The sequence of the uncertainties is given by the impact on \(\sigma(tq + \bar t q)\)
This Letter presents the first study of the energy-dependence of diboson polarization fractions in $WZ \rightarrow \ell\nu \ell'\ell'~(\ell, \ell'=e, \mu)$ production. The data set used corresponds to an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector. Two fiducial regions with an enhanced presence of events featuring two longitudinally-polarized bosons are defined. A non-zero fraction of events with two longitudinally-polarized bosons is measured with an observed significance of 5.2 standard deviations in the region with $100
Polarization fractions in the region with $100<p_T^Z\leq200$ GeV using three unconstrained parameters.
Polarization fractions in the region with $p_T^Z>200$ GeV using three unconstrained parameters.
Fraction of events where both bosons are longitudinally polarized in the region with $100<p_T^Z\leq200$ GeV using two unconstrained parameters.
A search for high-mass resonances decaying into a $\tau$-lepton and a neutrino using proton-proton collisions at a center-of-mass energy of $\sqrt{s}=13$ TeV is presented. The full Run 2 data sample corresponding to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment in the years 2015-2018 is analyzed. The $\tau$-lepton is reconstructed in its hadronic decay modes and the total transverse momentum carried out by neutrinos is inferred from the reconstructed missing transverse momentum. The search for new physics is performed on the transverse mass between the $\tau$-lepton and the missing transverse momentum. No excess of events above the Standard Model expectation is observed and upper exclusion limits are set on the $W^\prime\to \tau \nu$ production cross-section. Heavy $W^\prime$ vector bosons with masses up to 5.0 TeV are excluded at 95% confidence level, assuming that they have the same couplings as the Standard Model $W$ boson. For non-universal couplings, $W^\prime$ bosons are excluded for masses less than 3.5-5.0 TeV, depending on the model parameters. In addition, model-independent limits on the visible cross-section times branching ratio are determined as a function of the lower threshold on the transverse mass of the $\tau$-lepton and missing transverse momentum.
Observed and predicted $m_{\rm T}$ distributions including SSM and NU (cot$\theta$ = 5.5) $W^{\prime}$ signals with masses of 4 TeV. Please note that in the paper figure the bin content is divided by the bin width, but this is not done in the HepData table.
Observed and expected 95% CL upper limits on cross section times $\tau\nu$ branching fraction for $W^{\prime}_{\rm SSM}$.
Regions of the non-universal parameter space excluded at 95% CL.
An inclusive search for long-lived exotic particles (LLPs) decaying to final states with a pair of muons is presented. The search uses data corresponding to an integrated luminosity of 36.6 fb$^{-1}$ collected by the CMS experiment from the proton-proton collisions at $\sqrt{s}$ = 13.6 TeV in 2022, the first year of Run 3 of the CERN LHC. The experimental signature is a pair of oppositely charged muons originating from a common vertex spatially separated from the proton-proton interaction point by distances ranging from several hundred $\mu$m to several meters. The sensitivity of the search benefits from new triggers for displaced dimuons developed for Run 3. The results are interpreted in the framework of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons, and of an $R$-parity violating supersymmetry model, in which long-lived neutralinos decay to a pair of muons and a neutrino. The limits set on these models are the most stringent to date in wide regions of lifetimes for LLPs with masses larger than 10 GeV.
Efficiencies of the various displaced dimuon trigger paths and their combination as a function of $c\tau$ for the HAHM signal events with $m(Z_D) = 20\ GeV$. The efficiency is defined as the fraction of simulated events that satisfy the detector acceptance and the requirements of the following sets of trigger paths: the Run 2 (2018) triggers (dashed black); the Run 3 (2022, L3) triggers (blue); the Run 3 (2022, L2) triggers (red); and the OR of all these triggers (Run 3 (2022), black). The lower panel shows the ratio of the overall Run 3 (2022) efficiency to the Run 2 (2018) efficiency.
Overall efficiencies in the STA-STA (green) and TMS-TMS (red) dimuon categories, as well as their combination (black) as a function of $c\tau$ for the HAHM signal events with $m(Z_D) = 20\ GeV$. The solid curves show efficiencies achieved with the 2022 Run 3 triggers, whereas dashed curves show efficiencies for the subset of events selected by the triggers used in the 2018 Run 2 analysis. The efficiency is defined as the fraction of signal events that satisfy the criteria of the indicated trigger as well as the full set of offline selection criteria. The lower panel shows the relative improvement of the overall signal efficiency brought in by improvements in the trigger.
Comparison of the observed (black points) and expected (histograms) numbers of events in nonoverlapping $m_{\mu \mu}$ intervals in the STA-STA dimuon category, in the signal region optimized for the HAHM model. Yellow and green stacked filled histograms represent mean expected background contributions from QCD and DY, respectively, while statistical uncertainties in the total expected background are shown as hatched histograms. Signal contributions expected from simulated signals indicated in the legends are shown in red and blue. Their yields are set to the corresponding median expected 95% CL exclusion limits obtained from the ensemble of both dimuon categories, scaled up as indicated in the legend to improve visibility. The last bin includes events in the histogram overflow.
A search is described for the production of a pair of bottom-type vector-like quarks (B VLQs) with mass greater than 1000 GeV. Each B VLQ decays into a b quark and a Higgs boson, a b quark and a Z boson, or a t quark and a W boson. This analysis considers both fully hadronic final states and those containing a charged lepton pair from a Z boson decay. The products of the H $\to$ bb boson decay and of the hadronic Z or W boson decays can be resolved as two distinct jets or merged into a single jet, so the final states are classified by the number of reconstructed jets. The analysis uses data corresponding to an integrated luminosity of 138 fb$^{-1}$ collected in proton-proton collisions at $\sqrt{s}$ = 13 TeV with the CMS detector at the LHC from 2016 to 2018. No excess over the expected background is observed. Lower limits are set on the B VLQ mass at 95% confidence level. These depend on the B VLQ branching fractions and are 1570 and 1540 GeV for 100% B $\to$ bH and 100% B $\to$ bZ, respectively. In most cases, the mass limits obtained exceed previous limits by at least 100 GeV.
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic 4-jet bHbH channel.
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic 4-jet bHbZ channel.
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic 4-jet bZbZ channel.
This paper presents a search for top-squark pair production in final states with a top quark, a charm quark and missing transverse momentum. The data were collected with the ATLAS detector during LHC Run 2 and corresponds to an integrated luminosity of 139fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV. The analysis is motivated by an extended Minimal Supersymmetric Standard Model featuring a non-minimal flavour violation in the second- and third-generation squark sector. The top squark in this model has two possible decay modes, either $\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0$ or $\tilde{t}_1\rightarrow t\tilde{\chi}_1^0$, where the $\tilde{\chi}_1^0$ is undetected. The analysis is optimised assuming that both of the decay modes are equally probable, leading to the most likely final state of $tc + E_{\text{T}}^{\text{miss}}$. Good agreement is found between the Standard Model expectation and the data in the search regions. Exclusion limits at 95% CL are obtained in the $m(\tilde{t}_1)$ vs $m(\tilde{\chi}_1^0)$ plane and, in addition, limits on the branching ratio of the $\tilde{t}_1\rightarrow t\tilde{\chi}_1^0$ decay as a function of $m(\tilde{t}_1)$ are also produced. Top-squark masses of up to 800 GeV are excluded for scenarios with light neutralinos, and top-squark masses up to 600 GeV are excluded in scenarios where the neutralino and the top squark are almost mass degenerate.
<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=mass_obs">Observed exclusion contour in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=mass_exp">Expected exclusion contour in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=mass_band_1">$\pm1\sigma$ exclusion contour in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=mass_band_2">$\pm1\sigma$ exclusion contour in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=br_m1_obs">Observed exclusion contour in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$</a> <li><a href="?table=br_m1_exp">Expected exclusion contour in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$</a> <li><a href="?table=br_m1_band_1">$\pm1\sigma$ exclusion contour in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$</a> <li><a href="?table=br_m1_band_2">$\pm1\sigma$ exclusion contour in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=mass_upperLimits_obs">Observed upper limits on the top-spartner pair production cross-section at the 95% CL in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=br_m1_upperLimits_obs">Observed upper limits on the top-spartner pair production cross-section at the 95% CL in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$.</a> <li><a href="?table=mass_upperLimits_exp">Expected upper limits on the top-spartner pair production cross-section at the 95% CL in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=br_m1_upperLimits_exp">Expected upper limits on the top-spartner pair production cross-section at the 95% CL in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$.</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SRA_ntop">SRA region number of top-tagged jets distribution</a> <li><a href="?table=SRA_mttwo">SRA region $m_{\mathrm{T2}}(j^{b}_{R=1.0}, c)$ distribution</a> <li><a href="?table=SRB_ptc">SRB region leading c-tagged jet $p_{\mathrm{T}}$</a> <li><a href="?table=SRB_mtj">SRB region $m_{\mathrm{T}}(j, E_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{close}}$ distribution</a> <li><a href="?table=SRC_metsig">SRC region missing transverse momentum significance distribution</a> <li><a href="?table=SRC_mtj">SRC region $m_{\mathrm{T}}(j, E_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{close}}$ distribution</a> <li><a href="?table=SRD_NN">SRD NN signal score distribution</a> <li><a href="?table=SRD_meff">SRD $m_{\mathrm{eff}}$ distribution</a> </ul> <b>Pull distributions:</b> <ul> <li><a href="?table=SRABCPull">Pull plots showing the SRA, SRB and SRC post-fit data and SM agreement using the background-only fit configuration</a> <li><a href="?table=SRDPull">Pull plots showing the SRD post-fit data and SM agreement using the background-only fit configuration</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow_SRA">Cutflow of 3 signal points in the SRA region.</a> <li><a href="?table=cutflow_SRB">Cutflow of 3 signal points in the SRB region.</a> <li><a href="?table=cutflow_SRC">Cutflow of 3 signal points in the SRC region.</a> <li><a href="?table=cutflow_SRD750">Cutflow of 3 signal points in the SRD750 region.</a> <li><a href="?table=cutflow_SRD1000">Cutflow of 3 signal points in the SRD1000 region.</a> <li><a href="?table=cutflow_SRD1250">Cutflow of 3 signal points in the SRD1250 region.</a> <li><a href="?table=cutflow_SRD1500">Cutflow of 3 signal points in the SRD1500 region.</a> <li><a href="?table=cutflow_SRD1750">Cutflow of 3 signal points in the SRD1750 region.</a> <li><a href="?table=cutflow_SRD2000">Cutflow of 3 signal points in the SRD2000 region.</a> </ul> <b>Acceptance and efficiencies:</b> <ul> <li> <b>SRA_bin1:</b> <a href="?table=Acc_SRA_bin1">Acceptance table of the SRA$^{[450,575]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRA_bin1">Efficiency table of the SRA$^{[450,575]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRA_bin2:</b> <a href="?table=Acc_SRA_bin2">Acceptance table of the SRA$^{\geq 575}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRA_bin2">Efficiency table of the SRA$^{\geq 575}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRB_bin1:</b> <a href="?table=Acc_SRB_bin1">Acceptance table of the SRB$^{[100,150]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRB_bin1">Efficiency table of the SRB$^{[100,150]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRB_bin2:</b> <a href="?table=Acc_SRB_bin2">Acceptance table of the SRB$^{[150,400]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRB_bin2">Efficiency table of the SRB$^{[150,400]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRB_bin3:</b> <a href="?table=Acc_SRB_bin3">Acceptance table of the SRB$^{\geq 400}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRB_bin3">Efficiency table of the SRB$^{\geq 400}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRC_bin1:</b> <a href="?table=Acc_SRC_bin1">Acceptance table of the SRC$^{[100,150]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRC_bin1">Efficiency table of the SRC$^{[100,150]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRC_bin2:</b> <a href="?table=Acc_SRC_bin2">Acceptance table of the SRC$^{[150,300]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRC_bin2">Efficiency table of the SRC$^{[150,300]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRC_bin3:</b> <a href="?table=Acc_SRC_bin3">Acceptance table of the SRC$^{[300,500]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRC_bin3">Efficiency table of the SRC$^{[300,500]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRC_bin4:</b> <a href="?table=Acc_SRC_bin4">Acceptance table of the SRC$^{\geq 500}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRC_bin4">Efficiency table of the SRC$^{\geq 500}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin1:</b> <a href="?table=Acc_SRD_bin1">Acceptance table of the SRD750 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin1">Efficiency table of the SRD750 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin2:</b> <a href="?table=Acc_SRD_bin2">Acceptance table of the SRD1000 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin2">Efficiency table of the SRD1000 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin3:</b> <a href="?table=Acc_SRD_bin3">Acceptance table of the SRD1250 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin3">Efficiency table of the SRD1250 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin4:</b> <a href="?table=Acc_SRD_bin4">Acceptance table of the SRD1500 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin4">Efficiency table of the SRD1500 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin5:</b> <a href="?table=Acc_SRD_bin5">Acceptance table of the SRD1750 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin5">Efficiency table of the SRD1750 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin6:</b> <a href="?table=Acc_SRD_bin6">Acceptance table of the SRD2000 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin6">Efficiency table of the SRD2000 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> </ul> <b>Truth Code snippets</b> are available under "Resources" (purple button on the left)
Observed exclusion limits at the 95% CL in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.
Observed exclusion limits at the 95% CL in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$ and a $+1 \sigma$ deviation of the NNLO+NNLL theoretical cross-section of a $\tilde{t}_1$ pair-production.
Statistical combinations of searches for charginos and neutralinos using various decay channels are performed using $139\,$fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13\,$TeV with the ATLAS detector at the Large Hadron Collider. Searches targeting pure-wino chargino pair production, pure-wino chargino-neutralino production, or higgsino production decaying via Standard Model $W$, $Z$, or $h$ bosons are combined to extend the mass reach to the produced SUSY particles by 30-100 GeV. The depth of the sensitivity of the original searches is also improved by the combinations, lowering the 95% CL cross-section upper limits by 15%-40%.
Expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.
$+1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.
$-1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.
A combination of the results of several searches for the electroweak production of the supersymmetric partners of standard model bosons, and of charged leptons, is presented. All searches use proton-proton collision data at $\sqrt{s}$ = 13 TeV recorded with the CMS detector at the LHC in 2016-2018. The analyzed data correspond to an integrated luminosity of up to 137 fb$^{-1}$. The results are interpreted in terms of simplified models of supersymmetry. Two new interpretations are added with this combination: a model spectrum with the bino as the lightest supersymmetric particle together with mass-degenerate higgsinos decaying to the bino and a standard model boson, and the compressed-spectrum region of a previously studied model of slepton pair production. Improved analysis techniques are employed to optimize sensitivity for the compressed spectra in the wino and slepton pair production models. The results are consistent with expectations from the standard model. The combination provides a more comprehensive coverage of the model parameter space than the individual searches, extending the exclusion by up to 125 GeV, and also targets some of the intermediate gaps in the mass coverage.
Post-fit distribution of the $M(ll)$ variable for the low-$p_{\mathrm{T}}^{\mathrm{miss}}$ bins in the '2l soft' signal region of the '2/3l soft' analysis.
Post-fit distribution of the $M(ll)$ variable for the medium-$p_{\mathrm{T}}^{\mathrm{miss}}$ bins in the '2l soft' signal region of the '2/3l soft' analysis.
Post-fit distribution of the $M(ll)$ variable for the high-$p_{\mathrm{T}}^{\mathrm{miss}}$ bins in the '2l soft' signal region of the '2/3l soft' analysis.