We present measurements from a counter-optical spark chamber experiment of the differential cross sections for p̄p → π 0 π 0 , π 0 η 0 at 25 momenta in the range 1.1 − 2.0 GeV/ c (c.m. energy 2.12 to 2.43 GeV). Approximately 750 000 pictures were taken in the experiment.
THE ANGULAR DISTRIBUTIONS IN THE PUBLISHED FIGURES ARE NOT TABULATED HERE SINCE THEY ARE ONLY RECONSTRUCTED FROM THE LEGENDRE EXPANSION COEFFICIENTS WHICH WERE MEASURED DIRECTLY FROM THE DATA.
No description provided.
LEGENDRE COEFFICIENTS NORMALIZED SO THAT LEG(L=0) = SIG/(2*PI) (IDENTICAL PARTICLES IN FINAL STATE). THESE ARE PLOTTED IN FIG. 1 OF THE FOLLOWING PAPER.
p-He4 elastic scattering has been measured at 1.05-GeV incident proton energy, close to 180° in the center of mass. The steep backward peak observed at lower energies is still present, but its slope appears to decrease.
No description provided.
None
No description provided.
No description provided.
No description provided.
The polarization parameter P for the reactions p p → π − π + and p p → K − K + has been measured over essentially the full angular range at ll laboratory momenta between 1.0 and 2.2. GeV/ c , using a proton target polarized perpendicular to the scattering plane. The angles and momenta of both final state particles were determined from wire spark chambers, using the deflection caused by the polarized target magnet. Between 1000 and 5300 π − π + events, and 140 and 1300 K − K + events, were measured at each momentum. Differential cross sections for p p → π − π + were obtained. These are in excellent agreement with previous results. The polarization parameter for both channels is very close to +1 over much of the angular range. Legendre polynomial fits to the data are presented.
THE DIFFERENTIAL CROSS SECTIONS IN THIS EXPERIMENT AGREE WITH THE ONES FROM THE AUTHORS' EARLIER EXPERIMENT (E. EISENHANDLER ET AL., NP B96, 109(1975)) USING A LIQUID HYDROGEN TARGET, THOUGH THEY DO NOT CONSIDER THE PRESENT ONES QUITE AS RELIABLE.
No description provided.
No description provided.
The differential cross sections for K+d coherent, breakup, and charge-exchange scattering have been measured at several momenta in the interval 250-600 MeV/c. The data have been fitted using a partial-wave analysis. Assuming an s-wave description of I=1 scattering and using data from the coherent and charge-exchange channels, a description of I=0 K+−N scattering by a combination of s and p waves in a simple single-scattering impulse model has been attempted. The phase shifts obtained are unique up to the Fermi-Yang ambiguity, which can be removed by using existing polarization results at 600 MeV/c.
COHERENT SCATTERING DIFFERENTIAL CROSS SECTION IN THE LABORATORY FRAME.
COHERENT SCATTERING DIFFERENTIAL CROSS SECTION IN THE LABORATORY FRAME.
COHERENT SCATTERING DIFFERENTIAL CROSS SECTION IN THE LABORATORY FRAME.
The angular distribution of the inclusive reaction 4 He + p → 3 He + X was measured with 6.85 GeV/ c incident alphas. At large angles, the observed kinematics corresponds to the elastic scattering on the target proton of an 3 He present in the incoming 4 He, the remaining neutron being a spectator. This shows the presence of an important component of 3 He in 4 He. The integrated cross section for 3 He production is σ 3He = 24.1 ± 1.9 mb.
No description provided.
Elastik K − n ( I = 1) differential cross sections have been measured at 14 momenta between 610 and 940 MeV/ c , over the c.m. angular range −0.7 < cos θ ∗ < 0.8 . The results, which cover the c.m. energy range 1610–1765 MeV, have been fitted with Legendre polynomials and compared with some existing predictions from a partial-wave analysis.
No description provided.
No description provided.
SEMI-INCLUSIVE CROSS SECTION.
Qausi-elastic ω production by ep scattering in the kinematic region 0.3. < Q 2 < 1.4 GeV 2 and 1.7 < W < 2.8 GeV was studied using a streamer chamber at DESY. The production angular distribution for γ V p → ω p has a strong non-peripheral component for W < 2 GeV. The ω production cross section falls by a factor of 4 as W changes from 1.7 to 2.8 GeV. In contrast the cross section for ω production with | t | < 0.5 GeV 2 is W independent between 1.7 and 2.8 GeV and for W > 2.0 GeV consistent in both W and Q 2 dependence with the predictions of a model based on one-pion exchange and diffraction.
FOR ALL T-VALUES. THE GAMMA* P TOTAL CROSS SECTION WAS TAKEN FROM A FIT TO THE DATA OF S. STEIN ET AL., PR D12, 1884 (1975). 'PPD'.
'PPD'. PERIPHERAL OMEGA PRODUCTION.
No description provided.
The reaction γ V p → p π + π − was studied in the W , Q 2 region 1.3–2.8 GeV, 0.3–1.4 GeV 2 using the streamer chamber at DESY. A detailed analysis of rho production via γ V p→ ϱ 0 p is presented. Near threshold rho production has peripheral and non-peripheral contributions of comparable magnitude. At higher energies ( W > 2 GeV) the peripheral component is dominant. The Q 2 dependence of σ ( γ V p→ ϱ 0 p) follows that of the rho propagator as predicted by VDM. The slope of d σ /d t at 〈 Q 2 〉 = 0.4 and 0.8 GeV 2 is within errors equal to its value at Q 2 = 0. The overall shape of the ϱ 0 is t dependent as in photoproduction, but is independent of Q 2 . The decay angular distribution shows that longitudinal rhos dominate in the threshold region. At higher energies transverse rhos are dominant. Rho production by transverse photons proceeds almost exclusively by natural parity exchange, σ T N ⩾ (0.83 ± 0.06) σ T for 2.2 < W < 2.8 GeV. The s -channel helicity-flip amplitudes are small compared to non-flip amplitudes. The ratio R = σ L / σ T was determined assuming s -channel helicity conservation. We find R = ξ 2 Q 2 / M ϱ 2 with ξ 2 ≈ 0.4 for 〈 W 〉 = 2.45 GeV. Interference between rho production amplitudes from longitudinal and transverse photons is observed. With increasing energy the phase between the two amplitudes decreases. The observed features of rho electroproduction are consistent with a dominantly diffractive production mechanism for W > 2 GeV.
DIPION CHANNEL CROSS SECTION.
THE TOTAL CROSS SECTION WAS OBTAINED BY THE AUTHORS FROM A FIT TO THE SINGLE ARM DATA OF S. STEIN ET AL., PR D12, 1884 (1975).
No description provided.
The production and decay of the quasi-two-body final states KΔ(1232) and K ∗ (892)N produced in K + d interactions below 1.5 GeV/ c have been studied in a bubble chamber experiment.
RESONANCE CROSS SECTIONS COMPUTED BY MULTIPLYING THE PRODUCTION PERCENTAGES GIVEN BY THE INTERFERENCE MODEL BY THE CHANNEL CROSS SECTIONS GIVEN IN G. GIACOMELLI ET AL., NP B37, 577 (1972).
DIFFERENTIAL CROSS SECTIONS FROM DEUTERIUM DATA, NORMALIZED TO THE EXPERIMENTAL INTEGRATED CROSS SECTIONS QUOTED IN T 2.
LEGENDRE COEFFICIENTS FROM DEUTERIUM DATA.