We have studied c (charm) and b (bottom) quark production at the TRISTAN energy region by tagging prompt electrons from the semileptonic decays. Electrons were identified over a wide momentum range between 1 and 29 GeV/ c by a transition-radiation-detector in addition to a lead-glass calorimeter. The production cross sections of c and b quarks and the mean values of the fragmentation functions for c and b quarks were obtained as σ c = 55.9±8.8(stat.)±7.9(syst.) pb, σ b = 13.1±2.9(stat.)±1.0(syst.) pb, 〈 x c 〉 = 0.44±0.08(stat.)±0.04(syst.) and 〈 x b 〉 = 0.72±0.12(stat.)±0.08(syst.), respectively. The forward-backward asymmetries of the c and b quarks were also measured to be −0.57±0.16(stat.)±0.06(syst.) and −0.64±0.26(stat.)± 0.07(syst.), respectively. Both the cross sections and the forward-backward asymmetries of the c and b quarks are consistent with the standard model.
No description provided.
No description provided.
We report the full reconstruction of χc mesons through the decay chain χc→J/ψ γ, J/ψ→μ+μ−, using data obtained at the Collider Detector at Fermilab in 2.6±0.2 pb−1 of p¯p collisions at √s =1.8 TeV. This exclusive χc sample is used to measure the χc-meson production cross section times branching fractions. We obtain σ×B=3.2±0.4(stat)−1.1+1.2(syst) nb for χc mesons decaying to J/ψ with pT>6.0 GeV/c and pseudorapidity ‖η‖<0.5. From this and the inclusive J/ψ cross section we calculate the inclusive b-quark cross section to be 12.0±4.5 μb for pTb>8.5 GeV/c and ‖yb‖<1.
No description provided.
This determination of the b-quark cross section uses an earlier CDF measurement of the pbar p --> J/PSI X cross section of 6.88 +- 1.11 nb. See Abe et al. PRL 69, 3704.
A study of the fragmentation properties of charm and bottom quarks intoD mesons is presented. From 263 700Z0 hadronic decays collected in 1991 with the DELPHI detector at the LEP collider,D0,D+ andD*+ are reconstructed in the modesK−π+,K−π+K+ andD0π+ followed byD0→K−π+, respectively. The fractional decay widths\(\Gamma {{(Z^0\to {D \mathord{\left/ {\vphantom {D {\bar D}}} \right. \kern-\nulldelimiterspace} {\bar D}}X)} \mathord{\left/ {\vphantom {{(Z^0\to {D \mathord{\left/ {\vphantom {D {\bar D}}} \right. \kern-\nulldelimiterspace} {\bar D}}X)} {\Gamma _h }}} \right. \kern-\nulldelimiterspace} {\Gamma _h }}\) are determined, and first results are presented for the production ofD mesons from\(c\bar c\) and\(b\bar b\) events separately. The average energy fraction ofD*± in charm quark fragmentation is found to be 〈XE(D*)〉c=0.487±0.015 (stat)±0.005 (sys.). Assuming that the fraction ofDs and charm-baryons produced at LEP is similar to that around 10 GeV, theZ0 partial width into charm quark pairs is determined to beΓc/Γh=0.187±0.031 (stat)±0.023 (sys). The probability for ab quark to fragment into\(\bar B_s \) orb-baryons is inferred to be 0.268±0.094 (stat)±0.100 (sys) from the measured probability that it fragments into a\(\bar B^0 \) orB−.
Using full data sample.
Using full data sample with proper time > 1 ps to enrich (b bbar) content.
Data with Delta(L) > 1.
We present measurements of the bottom-quark production cross sections in pp¯ collisions at √s =1.8 TeV. From the inclusive electron production rate, we have determined the bottom-quark production cross sections to be 1010±270, 168±43, 37±10 nb for the rapidity range of ‖yb‖<1.0 and the transverse momentum ranges of pTb>15, 23, 32 GeV/c, respectively. In addition, from the associated electron-D0 production rate, we have determined the bottom-quark cross section to be 364±80(stat)±95(syst) nb for ‖yb‖<1.0 and pTb>19 GeV/c.
From the inclusive electron production rate.
From the associated electron-D0 production rate.
The W production cross section times the branching ratio for W→lν, l=e,μ decays has been measured as a function of the associated jet multiplicity. The data have been recorded at the Collider Detector at Fermilab during the 1988–89 run. A recent leading order QCD calculation agrees well with the data up to a jet multiplicity of 4.
No description provided.
No description provided.
Cross section times the leptonic branching ratio from the combined electron and muon decay modes.
We report results from Fermilab experiment E769 on the differential cross sections of D*± charm vector mesons with respect to Feynman-x (xF) and transverse momentum (PT), and on the atomic mass dependence of the production. The D* mesons were produced by a 250 GeV π beam on a target of Be, Al, Cu, and W foils. The dσdxF distribution is fit by the form ((1−xF)n) with n=3.5±0.3±0.1, the dσdPT2 distribution by exp(−b×PT2) with b=0.70±0.07±0.04 GeV−2, and the cross section A dependence by Aα with α=1.00±0.07±0.02. These results are compared to the equivalent parameters for the production of pseudoscalar D0 and D± charm mesons.
Data are in arbitrary units and are the weighted averages bin-by-bin for the 3 D0 modes KPI, K3PI and KPIPI0.
Data are in arbitrary units and are the weighted averages bin-by-bin for the 3 modes KPI, K3PI and KPIPI0.
Results of fit to DSIG/DXL distribution of the form (1-XL)**POWER in the XL range 0.1 to 0.6.
Using the ARGUS detector at thee+e− storage ring DORIS II, flavour-dependent kaon production inB meson decays has been studied. Using the leptons as flavour tags, it has been possible to separately measure the multiplicities ofK+,K− andKs0 in inclusiveB decays and in semileptonicB decays. The kaon production in semileptonicB decays was further used to estimate the ratio of charmed decays over all decays, and thus also the fraction of charmlessB decays.
B mesons are produced in the reaction E+ E- --> B BBAR at sqrt(s) = 10.6 GeV.
A determination of the hadronic fragmentation functions of the Z 0 boson is presented from a study of the inclusive hadron production with the DELPHI detector at LEP. These fragmentation functions were compared with the ones at lower energies, thus covering data in a large kinematic range: 196 ⩽ Q 2 ⩽ 8312 GeV 2 and x (= P h E beam ) > 0.08 . A large scaling violation was observed, which was used to extract the strong coupling constant in second order QCD: α s ( M Z ) = 0.118 ± 0.005. The corresponding QCD scale for five quark flavours is: Λ (5) MS = 230 ± 60 MeV .
No description provided.
Extraction of strong coupling constant ALP_S and the LAMQCD)MSBAR values.
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
The hadronic lineshape of the Z has been analyzed for evidence of signals of new, narrow vector resonances in the Z-mass range. The production rate of such resonances would be enhanced due to mixing with the Z. No evidence for new states is found, and it is thus possible to exclude, at the 95% confidence level, a quarkonium state in the mass range from 87.7 to 94.7 GeV.
Statistical errors only.