We have studied 419 τ pair events produced in the reactione+e−→τ+ τ− at a c.m. energy of 34.6 GeV. We measure the cross section and angular distribution, as well as the decay branching ratios. The production characteristics are consistent with the Standard Electroweak Model predictions of γ andZ0 interference. The branching ratios are generally consistent with the τ decaying according to standard weak interaction principles, but we observe somewhat more decays resulting in single charged hadrons plus neutrals than are predicted by present theory.
Corrected for radiative effects.
Measured cross section relative to Standard Model Prediction.
Asymmetry based on fits to angular distribution.
We observe γγ → η′ production in the reaction e + e − → e + e − π + π − γ. We measure the product γ γγ ( η ′) B ( η ′ → ϱ 0 γ ) to be 1.14 ± 0.08 ± 0.11 keV. A first measurement of the γγ → η′ transition form factor is made for Q 2 up to 1 GeV 2 .
No description provided.
We have measured the electron, muon, and charged-hadron pair production rates in two-phonon interactions for invariant masses above 2.0 GeV over a large of momentum transfer. The cross sections for electron and muon pairs show good agreement with the QED predictions at both small and large momentum transfer. The observed rate of hadron production is less than 6% of the rate that QED predicts for point-like hadrons, consistent with recent leading-order QCD calculations.
LOW Q**2 CROSS SECTIONS.
DIFFERENTIAL CROSS SECTIONS IN THE INVARIANT MASS FOR MUON AND ELECTRON PAIRS IN THE UNTAGGED, LOW Q**2 REGION.
HIGH Q**2 CROSS SECTIONS.
The differential cross section of the reactione+e−→e+e− at a c.m. energy of 34.7 GeV has been measured. The result, together with our previously measurede+e−→α+α− data, are compared with the standard model predictions. We obtain for the weak neutral current couplings the valuesgv2=0.09×0.06,ga2=0.38×0.08. A fit of the Weinberg mixing angle gives the valuegv2=0.09×0.06,ga2=0.038×0.08. The data are also used to set limits on possible deviations from the pointlike structure of leptons. An upper limit for thee+e− coupling to a heavy spin 0 boson is also given.
Fully corrected results for Bhabha scattering.
The differential cross section for Bhabha scattering.
??? CONSTANTS ???.
We present an experimental study of jetproduction in photon-photon interactions for 0.1≲Q2≲120 GeV2 and jet transverse momentum,pT, up to 5 GeV/c. At alQ2, the data show a highpT, tail, characteristic of a point-like interaction. The jet production cross-section approaches the quarkparton model (QPM) expectation as either jetpT orQ2 increases. Overall, the data are well described in both total cross-section and event topology by the sum of a vector-dominance model and a point-like interaction, represented by the QPM.
No description provided.
In the analysis of the reactione+e−→e+e−KS0Ks0 clear evidence for exclusive γγ→f2′ resonance production is observed. The productΓγγ ·B(f2′→K\(\bar K\)) is measured to be 0.10−0.03−0.02+0.04+0.03 keV independent of ana priori assumption on the helicity structure. Our data are consistent with a pure helicity 2 contribution and we derive an upper limit for the ratioΓγγ(0)/Γγγ. The absence of events in the mass region around 1.3 GeV clearly proves destructivef2−a2 interference and allows to measure the relative phases betweenf2,a2 andf2′. Upper limits on the production of the glueball candidate statesf2(1720) andX(2230) as well as theKS0KS0-continuum are given.
Data read from graph.
The processγγπ+π− has been measured with complete particle identification. Cross-sections are presented from near threshold up to the region of thef(1270). In the mass range 0.5–0.7 GeV, crosssections are lower than the Born term predictions and show no evidence for an ε(600). The two-photon width of thef(1270) is found to be in agreement with previous results.
Results on inclusive K s 0 production in e + e − annihilation at mean center-of-mass energies of 9.4, 12.0 and 30 GeV are presented. The ratio R (K 0 ) = 2 σ (K s 0 )/ σ μμ rises from 3.10 ± 0.75 at √ s = 9.4 GeV to 5.6 ± 1.2 at √ s = 30 GeV, corresponding to an approximately constant K 0 /charged-particle ratio of 0.12 ± 0.02. A similar ratio for K 0 / charged particle is observed for direct hadronic decays of the ϒ.
SYSTEMATIC ERROR INCLUDED.
NUMBER OF K0 PER HADRONIC EVENT. AUTHORS ALSO USE MULTIPLICITY TO ESTIMATE NUMBER OF K0 PER CHARGED PARTICLE.
INCLUDING EARLIER DATA.
We have measured the cross section of four charged pion production in photon-photon interactions in the invariant mass range 1.0≦Wγγ≦3.2 GeV and up toQ2=16 GeV2. For 1.2 GeV≦Wγγ≦1.7 GeV the process is dominated by ρ0ρ0 production with a rapid rise in cross section around 1.2 GeV, well below the nominal ρ0ρ0 threshold. The observed distributions in the two particle masses and in the production and decay angles are well described by an incoherent sum of the phase-space subprocesses γγ →ρ0ρ0, →ρ0π+π−, and →π+π−π+π−. A spin-parity analysis of the ρ0ρ0 system showsJP=2+ to dominate, although 0+ is also possible forWγγ≦1.4 GeV. Negative partity states are excluded.
The jet character of the hadronic final states produced ine+e− annihilations is studied in terms of jet measures such as thrust, sphericity, jet opening angle and jet masses, in the energy range 7.7 to 31.6 GeV. All distributions and averages have been corrected for detector effects and initial state radiation. The energy dependence of the averages of these jet quantities is used to estimate the contributions due to perturbative QCD and fragmentation effects. Correlations between the jet measures and the multiplicity of charged hadrons are also presented.
DIFFERENTIAL THRUST DISTRIBUTIONS WHERE THRUST IS MAX(SUM(ABS(PLONG))/SUM(ABS(P))).
MEAN THRUST VALUES AS A FUNCTION OF CM ENERGY.
DIFFERENTIAL SPERICITY DISTRIBUTIONS WHERE SPHERICITY IS 3/2*MIN(SUM(PT**2)/SUM(ABS(P))).