We have studied several features of the production of charged-hardon pairs by γγ collisions. We have measured the f0 partial width Γf0→γγ(Q2) for Q2 in the range 0<Q2<1.4 GeV2/c2, and obtained Γf0→γγ=2.52±0.13±0.38 keV at Q2≈0. The measured Q2 dependence is in agreement with the generalized vector-dominance model. The cross section for γγ→(π+π−+K+K−) in the mass region 1.6≤Mππ≤2.5 GeV/c2 has also been measured and the result compared with that expected from the QCD continuum.
Data read from graph.. Both statistical and systematic errors included.
The production of the charmed meson state D*+ has been observed in e+e− annihilation at 29 GeV. The fragmentation function for charmed quarks appears to be peaked about z=0.5.
No description provided.
No description provided.
UPDATED RESULT REPORTED AS PRELIMINARY IN G. TRILLING, PARIS CONFERENCE 1982.
The total momentum and transverse momentum spectra of electrons in e+e− annihilation at 29 GeV have been measured. The inclusive cross section is determined to be 14.4±1.6±5.2 pb for momenta greater than 2 GeV/c. The average semielectronic branching ratios of charm and bottom quarks are measured to be (6.3±1.2±2.1)% and (11.6±2.1±1.7)%, respectively. The fragmentation function for bottom quarks is determined to be peaked at high z, with 〈z〉b=0.75±0.05±0.04.
PT is the transverse momentum of the muon relative to the event thrust axis.
PT is the transverse momentum of the muon relative to the event thrust axis.
The differential cross sections for lepton pair production in e+e− annihilation at 29 GeV have been measured and found to be in good agreement with the standard model of the electroweak interaction. With the assumption of e−μ−τ universality, the weak neutral-current couplings are determined to be ga2=0.23±0.05 and gv2=0.03±0.04.
Numerical values supplied by M.Levi.
Data requested from authors.
Extrapolated to full angular range.
A search for single electrons from the decay of singly produced scalar electrons has been made at the PEP storage ring at SLAC. No events of this type have been found in 123 pb−1 of data, resulting in a cross-section limit of less than 2.4×10−2 pb within the detector acceptance, and a 95%-confidence-level lower limit on the scalar-electron mass of 22.2 GeV/c2.
No description provided.
A search has been made for the inclusive production of J ψ (3.1) and ϒ (9.4) mesons in e + e − interactions at 29 GeV, via their decay into two leptons. No signal is observed in the J ψ region, nor in the ϒ region. The limits on the cross sections are σ ( e + e − → ψX ) < 4.4 × 10 −36 cm 2 , and σ ( e + e − → ϒX ) < 4.7 × 10 −36 cm 2 . The same data yield limits on the branching ratios for the b quark BR ( b → ψX ) < 4.9% and BR ( b → ℓ + ℓ − X ) < 0.8%.
Energy correlations have been measured with the MARK II detector at the PEP storage ring (Stanford Linear Accelerator Center) at c.m. energy of 29 GeV and are compared to first-order QCD predictions. Fragmentation processes are significant and limit the precision with which the first-order strong-coupling constant can be determined.
The cross section for the production of π+π− or K+K− pairs in γγ interactions is measured for mππ between 1.7 and 3.5 GeV/c2 and for two intervals of γγ center-of-mass scattering angle. Results are compared with predictions of a QCD model.
Data read off graph.
Data read off graph.
η production has been investigated by the Mark II collaboration at the SLAC e+e− storage ring PEP. η particles are reconstructed by their γγ decay mode. The η fragmentation function has been measured and found to be in good agreement with the Lund-model prediction. η′ production has been measured for the first time in high-energy e+e− annihilation. There is evidence at the 3σ level for Ds± decay into ηπ± and η′π±.
Numerical values supplied by G.Wormser.
Z = 0.0 point extrapolated using LUND fragmentation model.
Z = 0.0 point extrapolated using LUND fragmentation model.
We present a new high-statistics measurement of the cross section for the process e+e−→e+e−π+π− at a center-of-mass energy of 29 GeV for invariant pion-pair masses M(π+π−) between 350 MeV/c2 and 1.6 GeV/c2. We observe the f2(1270) and measure its radiative width to be 3.15±0.04±0.39 keV. We also observe an enhancement in the π+π− spectrum near 1 GeV. General agreement is found with unitarized models of the γγ→π+π− reaction that include final-state interactions.