$\rm{J}/\psi$ production at low transverse momentum in p+p and d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 93 (2016) 064904, 2016.
Inspire Record 1420183 DOI 10.17182/hepdata.73526

We report on the measurement of $\rm{J}/\psi$ production in the dielectron channel at mid-rapidity (|y|<1) in p+p and d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from the STAR experiment at the Relativistic Heavy Ion Collider. The transverse momentum $p_{T}$ spectra in p+p for $p_{T}$ < 4 GeV/c and d+Au collisions for $p_{T}$ < 3 GeV/c are presented. These measurements extend the STAR coverage for $\rm{J}/\psi$ production in p+p collisions to low $p_{T}$. The $<p_{T}^{2}>$ from the measured $\rm{J}/\psi$ invariant cross section in p+p and d+Au collisions are evaluated and compared to similar measurements at other collision energies. The nuclear modification factor for $\rm{J}/\psi$ is extracted as a function of $p_{T}$ and collision centrality in d+Au and compared to model calculations using the modified nuclear Parton Distribution Function and a final-state $\rm{J}/\psi$ nuclear absorption cross section.

6 data tables

The mean square of $p_T$.

Nuclear absorption cross section.

The nuclear modicifation factor vs. $p_T$ for $J\psi$ with |y| < 1 in 0-100 percent central d+Au collisions.

More…

Effect of event selection on jetlike correlation measurement in $d$+Au collisions at $\sqrt{s_{\rm{NN}}}=200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 743 (2015) 333-339, 2015.
Inspire Record 1335765 DOI 10.17182/hepdata.73235

Dihadron correlations are analyzed in $\sqrt{s_{_{\rm NN}}} = 200$ GeV $d$+Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions.

16 data tables

The dihadron correlated yield normalized per radian per unit of pseudorapidity as function of $\Delta\eta$ in d+Au collisions on the near (|$\Delta\phi$| < $\pi$/3). Shown is the low FTPC-Au activity data. Trigger and associated particles have 1 < $p_T$ < 3 GeV/c and |$\eta$| < 1.

The dihadron correlated yield normalized per radian per unit of pseudorapidity as function of $\Delta\eta$ in d+Au collisions on the away side (|$\Delta\phi$ - $\pi$| < $\pi$/3. Shown is the high FTPC-Au activity data. Trigger and associated particles have 1 < $p_T$ < 3 GeV/c and |$\eta$| < 1.

The dihadron correlated yield normalized per radian per unit of pseudorapidity as function of $\Delta\eta$ in d+Au collisions on the near (|$\Delta\phi$| < $\pi$/3) side. Shown is the high-activity data after subtracting the unscaled. Trigger and associated particles have 1 < $p_T$ < 3 GeV/c and |$\eta$| < 1.

More…

Precision Measurement of the Longitudinal Double-spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at $\sqrt{s}=200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 115 (2015) 092002, 2015.
Inspire Record 1297229 DOI 10.17182/hepdata.73432

We report a new high-precision measurement of the mid-rapidity inclusive jet longitudinal double-spin asymmetry, $A_{LL}$, in polarized $pp$ collisions at center-of-mass energy $\sqrt{s}=200$ GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep inelastic scattering (DIS), semi-inclusive DIS, and RHIC $pp$ data. The measured asymmetries provide evidence for positive gluon polarization in the Bjorken-$x$ region $x>0.05$.

7 data tables

Jet neutral energy fraction (NEF) comparing data with simulations, where both are calculated with pT subtraction. This plot shows 8.4 < $p_T$ < 9.9 GeV/c.

Jet neutral energy fraction (NEF) comparing data with simulations, where both are calculated with pT subtraction. This plot shows 26.8 < $p_T$ < 31.6 GeV/c.

Inclusive jet $A_{LL}$ vs. parton jet $p_T$ for |eta|<0.5.

More…

J/$\psi$ production at high transverse momenta in p+p and Au+Au collisions at sqrt(s_{NN}) = 200 GeV

The STAR collaboration Adamczyk, L. ; Agakishiev, G. ; Aggarwal, M.M. ; et al.
Phys.Lett.B 722 (2013) 55-62, 2013.
Inspire Record 1127499 DOI 10.17182/hepdata.98623

We report $J/\psi$ spectra for transverse momenta $p_T$> 5 GeV/$c$ at mid-rapidity in p+p and Au+Au collisions at sqrt(s_{NN}) = 200 GeV.The inclusive $J/\psi$ spectrum and the extracted $B$-hadron feed-down are compared to models incorporating different production mechanisms. We observe significant suppression of the $J/\psi$ yields for $p_T$> 5 GeV/$c$ in 0-30% Au+Au collisions relative to the p+p yield scaled by the number of binary nucleon-nucleon collisions in Au+Au collisions. In 30-60% collisions, no such suppression is observed.The level of suppression is consistently less than that of high-$p_T$ $\pi^{\pm}$ and low-$p_T$ $J/\psi$.

5 data tables

(Color online.) The invariant $J/\psi$ cross section versus $p_{T}$ in p+p collisions at $\sqrt{s}$ = 200 GeV. The vertical bars and boxes depict the statistical and systematic uncertainties, respectively. Also shown are results published by STAR [15] and PHENIX [20]. The curves show theoretical calculations described in the text.

(Color online.) The fraction of $B \rightarrow J/\psi$ over the inclusive $J/\psi$ yield in $p+p$ collisions. The FONLL+CEM model calculation is also shown.

$J/\psi$ $p_{T}$ distributions in Au+Au collisions with different centralities at $\sqrt{s_{NN}}$ = 200 GeV. For clarity, the data and curves have been scaled as indicated in the legends. The PHENIX results are reported in [6]. The curves are model fits described in the text.

More…

Production of pions, kaons and protons in pp collisions at sqrt(s)= 900 GeV with ALICE at the LHC

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Eur.Phys.J.C 71 (2011) 1655, 2011.
Inspire Record 885104 DOI 10.17182/hepdata.57568

The production of $\pi^+$, $\pi^-$, $K^+$, $K^-$, p, and pbar at mid-rapidity has been measured in proton-proton collisions at $\sqrt{s} = 900$ GeV with the ALICE detector. Particle identification is performed using the specific energy loss in the inner tracking silicon detector and the time projection chamber. In addition, time-of-flight information is used to identify hadrons at higher momenta. Finally, the distinctive kink topology of the weak decay of charged kaons is used for an alternative measurement of the kaon transverse momentum ($p_{\rm T}$) spectra. Since these various particle identification tools give the best separation capabilities over different momentum ranges, the results are combined to extract spectra from $p_{\rm T}$ = 100 MeV/$c$ to 2.5 GeV/$c$. The measured spectra are further compared with QCD-inspired models which yield a poor description. The total yields and the mean $p_{\rm T}$ are compared with previous measurements, and the trends as a function of collision energy are discussed.

4 data tables

Transverse momentum spectra for positive and negative pions.

Transverse momentum spectra for positive and negative kaons.

Transverse momentum spectra for protons and antiprotons.

More…

Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
New J.Phys. 13 (2011) 053033, 2011.
Inspire Record 882098 DOI 10.17182/hepdata.57077

Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.

41 data tables

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 2360 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

More…

Charged-particle multiplicities in pp interactions at sqrt(s) = 900 GeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, G. ; Abat, E. ; Abbott, B. ; et al.
Phys.Lett.B 688 (2010) 21-42, 2010.
Inspire Record 849050 DOI 10.17182/hepdata.54850

The first measurements from proton-proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range |eta|<2.5 and pT>500 MeV. The measurements are compared to Monte Carlo models of proton-proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity at eta = 0 is measured to be 1.333 +/- 0.003 (stat.) +/- 0.040 (syst.), which is 5-15% higher than the Monte Carlo models predict.

5 data tables

Average value of charged particle multiplicity per event and unit of pseudorapidity in the pseudorapidity range from -0.2 to 0.2.

Charged particle multiplicity as a function of pseudorapidity.

Charged particle multiplicity as a function of transverse momentum.

More…

Observation of pi^+pi^-pi^+pi^- Photoproduction in Ultra-Peripheral Heavy Ion Collisions at STAR

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 81 (2010) 044901, 2010.
Inspire Record 838875 DOI 10.17182/hepdata.98963

We present a measurement of pi^+pi^-pi^+pi^- photonuclear production in ultra-peripheral Au-Au collisions at sqrt(s_{NN}) = 200 GeV from the STAR experiment. The pi^+pi^-pi^+pi^- final states are observed at low transverse momentum and are accompanied by mutual nuclear excitation of the beam particles. The strong enhancement of the production cross section at low transverse momentum is consistent with coherent photoproduction. The pi^+pi^-pi^+pi^- invariant mass spectrum of the coherent events exhibits a broad peak around 1540 pm 40 MeV/c^2 with a width of 570 pm 60 MeV/c^2, in agreement with the photoproduction data for the rho^0(1700). We do not observe a corresponding peak in the pi^+pi^- final state and measure an upper limit for the ratio of the branching fractions of the rho^0(1700) to pi^+pi^- and pi^+pi^-pi^+pi^- of 2.5 % at 90 % confidence level. The ratio of rho^0(1700) and rho^0(770) coherent production cross sections is measured to be 13.4 pm 0.8 (stat.) pm 4.4 (syst.) %.

6 data tables

Distribution of the $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$ transverse momentum $p_{T} = |\sum_{i=1}^{4}\overrightarrow{p}_{T,i}|$􏰇: The filled circles are the measured 􏰇points with the statistical errors. The hatched filled histogram shows the expected distribution from simulation of coherent photoproduction (cf. section III). The strong enhancement at low transverse momenta is due to coherently produced $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$. This unique signature is used in the event selection which requires $p_{T}$ < 150 MeV/c (arrow). The remaining background is estimated from +2 or −2 charged four-prong combinations, by normalizing (factor = 1.186 $\pm$ 0.054) their $p_{T}$ distribution (gray filled histogram) to that of the neutral four-prongs in the region of $p_{T}$ > 250 MeV/c (vertical line) yielding the unfilled histogram (see section IV).

Invariant Mass distribution of two-pion subsystems: The filled circles show the measured $\pi^{+}\pi^{-}$ invariant mass spectrum for the selected four-prong sample (four entries per event) with statistical errors. The open circles represent the mass spectrum of the like-sign pion pairs (two entries per event). The unlike-sign mass distribution exhibits an enhancement with respect to the like-sign pairs in the $\rho^{0}$(770) region. The solid line histograms show the prediction from simulation assuming the relative S-wave decay $\rho`\rightarrow\rho^{0}$(770) $f_{0}$(600).

Invariant Mass distribution of two-pion subsystems: The open circles show the measured invariant mass spectrum of the lightest $\pi^{+}\pi^{-}$ pair in the event with the bars indicating the statistical errors. The filled circles represent the invariant mass distribution of the $\pi^{+}\pi^{-}$ that is recoiling against the lightest pair. The spectrum exhibits a clear peak in the $\rho^{0}$(770) region. The solid line histograms show the prediction from simulation assuming the relative S-wave decay $\rho`\rightarrow\rho^{0}$(770) $f_{0}$(600).

More…

Version 2
Long range rapidity correlations and jet production in high energy nuclear collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 064912, 2009.
Inspire Record 830070 DOI 10.17182/hepdata.101345

The STAR Collaboration at RHIC presents a systematic study of high transverse momentum charged di-hadron correlations at small azimuthal pair separation \dphino, in d+Au and central Au+Au collisions at $\rts = 200$ GeV. Significant correlated yield for pairs with large longitudinal separation \deta is observed in central Au+Au, in contrast to d+Au collisions. The associated yield distribution in \detano$\times$\dphi can be decomposed into a narrow jet-like peak at small angular separation which has a similar shape to that found in d+Au collisions, and a component which is narrow in \dphi and \textcolor{black}{depends only weakly on} $\deta$, the 'ridge'. Using two systematically independent analyses, \textcolor{black}{finite ridge yield} is found to persist for trigger $\pt > 6$ \GeVc, indicating that it is correlated with jet production. The transverse momentum spectrum of hadrons comprising the ridge is found to be similar to that of bulk particle production in the measured range ($2 < \pt < 4 \GeVc$).

7 data tables

FIG. $2: \quad Y_{\text {slice }}(\Delta \eta ; \delta=0.3)$ (Eq. 5 ) for central Au+Au collisions, $2 \mathrm{GeV} / \mathrm{c}<p_{t}^{a s s o c}<p_{t}^{t r i g}$, and various $p_{t}^{t r i g}$ vs. $\Delta \eta$; the shaded bands represents the systematic uncertainties due to $v_{2}$ (not shown for $6<p_{t}^{\text {trig }}<10 \mathrm{GeV} / \mathrm{c}$ ). The solid and dashed lines represents a constant or linear fit to $1<|\Delta \eta|$ $<1.8$; only shown for $3<p_{t}^{t r i g}<4 \mathrm{GeV} / c$ (see text). Some data points are displaced horizontally for clarity.

FIG. 3. Left panel: width of Gaussian fit to jet-like peak for Eq. (6) $(\Delta \eta$ width, circles) and Eq. (7) $(\Delta \phi$ width, triangles) ; $ 2 \mathrm{GeV}/c<p_{t}^{\text{assoc}}<p_{t}^{\text {trig }}$, as a function of $p_{t}^{\text {trig }},$ for central $\mathrm{Au}+$ Au collisions (filled symbols) and $d+$ Au collisions (open symbols). Some data points are displaced horizontally for clarity. Right panel: the distributions of Eqs. (6) and (7) for $4<p_{t}^{\text {trig }}<5 \mathrm{GeV} / c$ and $2 \mathrm{GeV} / c<p_{t}^{\text {assoc }}<p_{t}^{\text {trig }}$.

FIG. 3. Left panel: width of Gaussian fit to jet-like peak for Eq. (6) $(\Delta \eta$ width, circles) and Eq. (7) $(\Delta \phi$ width, triangles) ; $ 2 \mathrm{GeV}/c<p_{t}^{\text{assoc}}<p_{t}^{\text {trig }}$, as a function of $p_{t}^{\text {trig }},$ for central $\mathrm{Au}+$ Au collisions (filled symbols) and $d+$ Au collisions (open symbols). Some data points are displaced horizontally for clarity. Right panel: the distributions of Eqs. (6) and (7) for $4<p_{t}^{\text {trig }}<5 \mathrm{GeV} / c$ and $2 \mathrm{GeV} / c<p_{t}^{\text {assoc }}<p_{t}^{\text {trig }}$.

More…

Version 2
Global polarization measurement in Au+Au collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 76 (2007) 024915, 2007.
Inspire Record 750410 DOI 10.17182/hepdata.98581

The system created in non-central relativistic nucleus-nucleus collisions possesses large orbital angular momentum. Due to spin-orbit coupling, particles produced in such a system could become globally polarized along the direction of the system angular momentum. We present the results of Lambda and anti-Lambda hyperon global polarization measurements in Au+Au collisions at sqrt{s_NN}=62.4 GeV and 200 GeV performed with the STAR detector at RHIC. The observed global polarization of Lambda and anti-Lambda hyperons in the STAR acceptance is consistent with zero within the precision of the measurements. The obtained upper limit, |P_{Lambda,anti-Lambda}| <= 0.02, is compared to the theoretical values discussed recently in the literature.

11 data tables

(Color online) Invariant mass distribution for the $\Lambda$ (filled circles) and $\overline{\Lambda}$ (open squares) candidates after the quality cuts for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%).

(Color online) Global polarization of $\Lambda$–hyperons as a function of $\Lambda$ transverse momentum $p^{\Lambda}_{t}$. Filled circles show the results for Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV (centrality region 20-70%) and open squares indicate the results for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%). Only statistical uncertainties are shown.

(Color online) Global polarization of $\Lambda$–hyperons as a function of $\Lambda$ pseudorapidity $\eta^{\Lambda}$. Filled circles show the results for Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV (centrality region 20-70%). A constant line fit to these data points yields $P_{\Lambda}=(2.8\pm 9.6)\times 10^{-3}$ with $\chi^{2}/ndf=6.5/10$. Open squares show the results for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%). A constant line fit gives $P_{\Lambda}=(1.9\pm 8.0)\times 10^{-3}$ with $\chi^{2}/ndf=14.3/10$. Only statistical uncertainties are shown.

More…