A search for charged-lepton flavour violation (CLFV) in top quark (t) production and decay is presented. The search uses proton-proton collision data corresponding to 138 fb$^{-1}$ collected with the CMS experiment at $\sqrt{s}$ = 13 TeV. The signal consists of the production of a single top quark via a CLFV interaction or top quark pair production followed by a CLFV decay. The analysis selects events containing a pair of oppositely charged muon and hadronically decaying $\tau$ lepton and at least three jets, where one has been identified to originate from the fragmentation of a bottom quark. Machine learning classification techniques are used to distinguish signal from standard model background events. The results of this search are consistent with the standard model expectations. The upper limits at 95% confidence level on the branching fraction $\mathcal{B}$ for CLFV top quark decays to a muon, a $\tau$ lepton, and an up or a charm quark are set at $\mathcal{B}$(t $\to \mu\tau$u) $\lt$ (0.040, 0.078, and 0.118) $\times$ 10$^{-6}$, and $\mathcal{B}$(t $\to\mu\tau$c) $\lt$ (0.810, 1.710, and 2.052) $\times$ 10$^{-6}$ for scalar, vector, and tensor-like operators, respectively.
The expected and observed upper limits on CLFV Wilson coefficients. The Limits on the Wilson coefficients are extracted from the upper limits on the cross sections.
The expected and observed upper limits on top quark CLFV branching fractions. The Limits on the top quark CLFV branching fractions are extracted from the upper limits on the Wilson coefficients.
A search for resonances in top quark pair ($\text{t}\bar{\text{t}}$) production in final states with two charged leptons and multiple jets is presented, based on proton-proton collision data collected by the CMS experiment at the CERN LHC at $\sqrt{s}$ = 13 TeV, corresponding to 138 fb$^{-1}$. The analysis explores the invariant mass of the \ttbar system and two angular observables that provide direct access to the correlation of top quark and antiquark spins. A significant excess of events is observed near the kinematic $\text{t}\bar{\text{t}}$ threshold compared to the nonresonant production predicted by fixed-order perturbative quantum chromodynamics (pQCD). The observed enhancement is consistent with the production of a color-singlet pseudoscalar ($^1$S$^{[1]}_0$) quasi-bound toponium state, as predicted by nonrelativistic quantum chromodynamics. Using a simplified model for $^1$S$^{[1]}_0$ toponium, the cross section of the excess above the pQCD prediction is measured to be 8.8$^{+1.2}_{-1.4}$ pb.
Observed cross section of $\eta_t$
Observed values of twice the negative log-likelihood with respect to the best-fit point (2dNLL) as a function of the cross sections of $\eta_t$ and $\chi_t$.
A search for $t$-channel exchange of leptoquarks (LQs) is performed in dimuon and dielectron spectra using proton-proton collision data collected at $\sqrt{s}$ = 13 TeV with the CMS detector at the CERN LHC. The data correspond to an integrated luminosity of 138 fb$^{-1}$. Eight scenarios are considered, in which scalar or vector LQs couple up or down quarks to muons or electrons, for dilepton invariant masses above 500 GeV. The LQ masses are probed up to 5 TeV, beyond a regime probed by previous pair-production and single-production searches. The differential distributions of dilepton events are fit to templates that model the nonresonant LQ exchange and various standard model background processes. Limits are set on LQ-fermion coupling strengths for scalar and vector LQ masses in the 1-5 TeV range at 95% confidence level, establishing stringent limits on first- and second-generation LQs.
Observed and Expected UL exclusions on the $BR(H\to SUEP)$ of hadronic signals with $m_{A'} = 0.7\;GeV$ and $BR(A' \rightarrow ee) = BR(A' \rightarrow \mu\mu) = 0.15$ and $BR(A' \rightarrow \pi\pi) = 0.7$.
The observed data in the dielectron channel and the fitted signal-plus-background templates, shown for the $S_{e u}$ scenario with a candidate LQ mass of 2.5 TeV. Distributions of events are binned in the reconstructed dilepton mass, rapidity, and cosine theta.
Observed and Expected UL exclusions on the $BR(H\to S)$ of leptonic signals with $m_{A'} = 0.5\;GeV$ and $BR(A' \rightarrow ee) = BR(A' \rightarrow \mu\mu) = 0.2$ and $BR(A' \rightarrow \pi\pi) = 0.6$.
A first search is presented for vector-like leptons (VLLs) decaying into a light long-lived pseudoscalar boson and a standard model $\tau$ lepton. The pseudoscalar boson is assumed to have a mass of 2 GeV and to decay exclusively into a pair of photons. It is identified using the CMS muon system. The analysis is carried out using a data set of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment in 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. Selected events contain at least one pseudoscalar boson decaying electromagnetically in the muon system and at least one hadronically decaying $\tau$ lepton. No significant excess of data events is observed compared to the background expectation. Upper limits are set at 95% confidence level on the vector-like lepton production cross section as a function of the VLL mass and the pseudoscalar boson mean proper decay length. The observed and expected exclusion ranges of the VLL mass extend up to 700 and 670 GeV, respectively, depending on the pseudoscalar boson lifetime.
Distributions of the number of hits in the cluster (Nhits) for the DT category in the signal region (SR). The last histogram bin contains all overflow events.
Distributions of the number of hits in the cluster (Nhits) for the CSC category in the signal region (SR). The last histogram bin contains all overflow events.
Distributions of the number of hits in the cluster (Nhits) for the DT category in the out-of-time (OOT) region. The last histogram bin contains all overflow events.
Measurements are presented of the W and Z boson production cross sections in proton-proton collisions at a center-of-mass energy of 13.6 TeV. Data collected in 2022 and corresponding to an integrated luminosity of 5.01 fb$^{-1}$ with one or two identified muons in the final state are analyzed. The results for the products of total inclusive cross sections and branching fractions for muonic decays of W and Z bosons are 11.93 $\pm$ 0.08 (syst) $\pm$ 0.17 (lumi) $^{+0.07}_{-0.07}$ (acc) nb for W$^+$ boson production, 8.86 $\pm$ 0.06 (syst) $\pm$ 0.12 (lumi) $^{+0.05}_{-0.06}$ (acc) nb for W$^-$ boson production, and 2.021 $\pm$ 0.009 (syst) $\pm$ 0.028 (lumi) $^{+0.011}_{-0.013}$ (acc) nb for the Z boson production in the dimuon mass range of 60-120 GeV, all with negligible statistical uncertainties. Furthermore, the corresponding fiducial cross sections, as well as cross section ratios for both fiducial and total phase space, are provided. The ratios include charge-separated results for W boson production (W$^+$ and W$^-$) and the sum of the two contributions (W$^\pm$), each relative to the measured Z boson production cross section. Additionally, the ratio of the measured cross sections for W$^+$ and W$^-$ boson production is reported. All measurements are in agreement with theoretical predictions, calculated at next-to-next-to-leading order accuracy in quantum chromodynamics.
Corrected normalized distribution of the transverse momentum of the leading muon in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
Corrected normalized distribution of the transverse momentum of the trailing muon in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
Corrected normalized distribution of the missing transverse momentum in the Z boson signal region. Simulated contributions from Z boson, electroweak, and ttbar production, as well as their sum, and the data are shown.
A search for $\gamma$H production is performed with data from the CMS experiment at the LHC corresponding to an integrated luminosity of 138 fb$^{-1}$ at a proton-proton center-of-mass collision energy of 13 TeV. The analysis focuses on the topology of a boosted Higgs boson recoiling against a high-energy photon. The final states of H $\to$$\mathrm{b\bar{b}}$ and H $\to$ 4$\ell$ are analyzed. This study examines effective HZ$\gamma$ and H$\gamma\gamma$ anomalous couplings within the context of an effective field theory. In this approach, the production cross section is constrained to be $\sigma_{\gamma\text{H}}$$\lt$ 16.4 fb at 95% confidence level (CL). Simultaneous constraints on four anomalous couplings involving HZ$\gamma$ and H$\gamma\gamma$ are provided. Additionally, the production rate for H $\to$ 4$\ell$ is examined to assess potential enhancements in the Yukawa couplings between light quarks and the Higgs boson. Assuming the standard model values for the Yukawa couplings of the bottom and top quarks,the following simultaneous constraints are obtained: $\kappa_\text{u}$ = (0.0 $\pm$ 1.5) $\times$ 10$^{3}$, $\kappa_\text{d}$ = (0.0 $\pm$ 7.1) $\times$ 10$^{2}$, $\kappa_\text{s}$ = 0$^{+33}_{-34}$, and $\kappa_\text{c}$ = 0.0$^{+2.7}_{-3.0}$. This rules out the hypothesis that up- or down-type quarks in the first or second generation have the same Yukawa couplings as those in the third generation, with a CL greater than 95%.
Observed and expected constraints on the $\gamma H$ cross section $\sigma_{\gamma H}$ and on the $c_{\gamma\gamma}$, $c_{z\gamma}$, $\tilde{c}_{\gamma\gamma}$, $\tilde{c}_{z\gamma}$ couplings using the $ H\to b \bar b$ and $4\ell$ channels combined. The third and fourth rows show constraints on cross section multiplied by the branching fraction using the $H \rightarrow b \bar b $ and $H \rightarrow 4\ell$ channels only, respectively. The 68% (central value with uncertainties) and 95% (upper limit or allowed intervals) CL exclusion regions are shown.
Observed and expected constraints on the $\kappa_{u}$, $\kappa_{d}$, $\kappa_{s}$, and $\kappa_{c}$ couplings are shown using the $H \to 4\ell$ channel. In one scenario, all couplings except the one being shown are fixed at their SM values. In the other scenario, the Yukawa couplings for the three other light quarks are left unconstrained, and BSM contributions are allowed. The 68% (central value with error bars) and 95% (bracketed range or upper limit) CL exclusion regions are displayed.
Observed and expected constraints on the $\bar\kappa_{u}$, $\bar\kappa_{d}$, $\bar\kappa_{s}$, and $\bar\kappa_{c}$ defined as $\bar\kappa_{q}=y_{q}v/m_{b}$, following the same conventions as outlined in Table 3.
The measurements of the Higgs boson (H) production cross sections performed by the CMS Collaboration in the four-lepton (4$\ell$, $\ell$=e,$\mu$) final state at a center-of-mass energy $\sqrt{s}$ = 13.6 TeV are presented. These measurements are based on data collected with the CMS detector at the CERN LHC in 2022, corresponding to an integrated luminosity of 34.7 fb$^{-1}$. Cross sections are measured in a fiducial region closely matching the experimental acceptance, both inclusively and differentially, as a function of the transverse momentum and the absolute value of the rapidity of the four-lepton system. The H $\to$ ZZ $\to$ 4$\ell$ inclusive fiducial cross section is measured to be 2.89$^{+0.53}_{-0.49}$ (stat) $^{+0.29}_{-0.21}$ (syst) fb, in agreement with the standard model expectation of 3.09$^{+0.27}_{-0.24}$ fb.
Postfit reconstructed distribution of the 4-lepton invariant mass in the 70 < m4l < 350 GeV mass range.
Postfit reconstructed distribution of the 4-lepton invariant mass in the 105< m4l < 160 GeV mass range.
Measured inclusive fiducial H->ZZ->4l cross section in the various final states at 13.6 TeV.
A search for a heavy pseudoscalar Higgs boson, A, decaying to a 125 GeV Higgs boson h and a Z boson is presented. The h boson is identified via its decay to a pair of tau leptons, while the Z boson is identified via its decay to a pair of electrons or muons. The search targets the production of the A boson via the gluon-gluon fusion process, gg $\to$ A, and in association with bottom quarks, $\mathrm{b\bar{b}}$A. The analysis uses a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector at the CERN LHC in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV. Constraints are set on the product of the cross sections of the A production mechanisms and the A $\to$ Zh decay branching fraction. The observed (expected) upper limit at 95% confidence level ranges from 0.049 (0.060) pb to 1.02 (0.79) pb for the gg $\to$ A process and from 0.053 (0.059) pb to 0.79 (0.61) pb for the $\text{b}\bar{\text{b}}$A process in the probed range of the A boson mass, $m_\text{A}$, from 225 GeV to 1 TeV. The results of the search are used to constrain parameters within the ${\text{M}_{\text{h,EFT}}^{\text{125}}}$ benchmark scenario of the minimal supersymmetric extension of the standard model. Values of $\tan\beta$ below 2.2 are excluded in this scenario at 95% confidence level for all $m_\text{A}$ values in the range from 225 to 350 GeV.
Exclusion limits on ggA production.
Exclusion limits on ggA production.
Example description
A pioneering machine-learning-based flavor-tagging algorithm combining same-side and opposite-side tagging is used to obtain the equivalent of 27$\,$000 tagged B$^0_\mathrm{s}$$\to$ J/$\psi\, \phi$(1020) decays from pp collisions at $\sqrt{s} =$ 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 96.5 fb$^{-1}$. A time- and flavor-dependent angular analysis of the $\mu^+\mu^-$K$^+$K$^-$ final state is used to measure parameters of the $\mathrm{B}^0_\mathrm{s}$-$\overline{\mathrm{B}}^0_\mathrm{s}$ system. The weak phase is measured to be $\phi_\mathrm{s}$ = $-$73 $\pm$ 23 (stat) $\pm$ 7 (syst) mrad, which, combined with a $\sqrt{s}$ = 8 TeV CMS result, gives $\phi_\mathrm{s}$ = $-$74 $\pm$ 23 mrad. This value differs from zero by 3.2 standard deviations, providing evidence for $CP$ violation in B$^0_\mathrm{s}$$\to$ J/$\psi\,\phi$(1020) decays. All measured physics parameters are found to agree with standard model predictions where available.
Measured values and uncertainties of the main parameters of interest, as obtained from the analysis to data at 13 TeV.
Values and uncertainties of the physics parameters obtained from the combination of the CMS 8 TeV and 13 TeV results using the BLUE method. The uncertainty includes both statistical and systematic sources.
Matrix of the correlations of the statistical uncertainties between pairs of physics parameters, as obtained from the analysis to data at 13 TeV.
This paper presents a new $\tau$-lepton reconstruction and identification procedure at the ATLAS detector at the Large Hadron Collider, which leads to significantly improved performance in the case of physics processes where a highly boosted pair of $\tau$-leptons is produced and one $\tau$-lepton decays into a muon and two neutrinos ($\tau_{\mu}$), and the other decays into hadrons and one neutrino ($\tau_{had}$). By removing the muon information from the signals used for reconstruction and identification of the $\tau_{had}$ candidate in the boosted pair, the efficiency is raised to the level expected for an isolated $\tau_{had}$. The new procedure is validated by selecting a sample of highly boosted $Z\rightarrow\tau_{\mu}\tau_{had}$ candidates from the data sample of $140$${fb}^{-1}$ of proton-proton collisions at $13$ TeV recorded with the ATLAS detector. Good agreement is found between data and simulation predictions in both the $Z\rightarrow\tau_{\mu}\tau_{had}$ signal region and in a background validation region. The results presented in this paper demonstrate the effectiveness of the $\tau_{had}$ reconstruction with muon removal in enhancing the signal sensitivity of the boosted $\tau_{\mu}\tau_{had}$ channel at the ATLAS detector.
The distribution of the TauID jet RNN score for $\tau_\mathrm{had}^{\mu\mkern-10mu\backslash}$ in the SR. `$Z(\rightarrow\tau\tau)$+jets' represents the contributions from the signal process. `Top' represents the predicted contributions from the $t\bar{t}$, single-top-quark, and $tW$ processes. `Diboson' indicates the contributions from $WW$, $WZ$, and $ZZ$ processes. `Other' includes the contributions from the $Z(\rightarrow\ell\ell)$+jets, $W$+jets, and Higgs boson processes. The uncertainties shown include both statistical and systematic sources.
The distribution of the TauID jet RNN score for $\tau_\mathrm{had}^{\mu\mkern-10mu\backslash}$ in the VR. `$Z(\rightarrow\tau\tau)$+jets' represents the contributions from the signal process. `Top' represents the predicted contributions from the $t\bar{t}$, single-top-quark, and $tW$ processes. `Diboson' indicates the contributions from $WW$, $WZ$, and $ZZ$ processes. `Other' includes the contributions from the $Z(\rightarrow\ell\ell)$+jets, $W$+jets, and Higgs boson processes. The uncertainties shown include both statistical and systematic sources.
The distribution of the $p_\mathrm{T}{}_{\mu\mathrm{-had}}^\mathrm{col}$ in the SR. `$Z(\rightarrow\tau\tau)+\text{jets}$' represents the contributions from the signal process. `Diboson' indicates the contributions from $WW$, $WZ$, and $ZZ$ processes. `Top' represents the predicted contributions from the $t\bar{t}$, single-top-quark, and $tW$ processes. `Other' includes the contributions from the $Z(\rightarrow\ell\ell)$+jets, $W$+jets, and Higgs boson processes. The uncertainties shown include both statistical and systematic sources.