The χ 1 ++ (3507) and the χ 2 ++ (3553) states have been observed in the Goliath spectrometer at the CERN SPS in 185 GeV/ c π − -Be collisions. Their radiative decays contribute 27.7% (for the χ 1 ++ ) and 12.8% (for the χ 2 ++ ) to J ϕ production. At this energy, their cross sections are 65±19 nb and 96±29 nb, respectively
No description provided.
We measured the total cross section for p p scattering at s = 52.8 GeV at the CERN ISR, using the direct, total-rate method. The result obtained, σ tot ( p p ) = 44.70 ± 0.53 mb , shows that, in common with σ tot (pp), this cross section also starts to rise in the ISR energy range. We remeasured the total cross section for pp scattering at the same energy, obtaining σ tot (pp) = 43.26 ± 0.33 mb, and found for the difference, Δσ tot = σ tot ( p p ) − σ tot ( pp ) , a value of 1.44±0.45 mb.
No description provided.
No description provided.
The reaction e + e - → e + e - η' has been observed in the JADE experiment at PETRA, by detecting the final state π + π - γ, resulting from the decay η' → γϱ 0 . The cross section was measured at an average beam energy of 17.15 GeV to be σ(e + e - → e + e - η') = 2.2 ± 0.2 (stat.) ± 0.4(syst.) nb, yielding the radiative width Γ η'γγ = 5.0 ± 0.5(stat.) ± 0.9 (syst.) keV.
No description provided.
None
No description provided.
No description provided.
The ration R = σ (e + e − → hadrons) σ μμ was measured between 12.0 and 36.7 GeV c.m. energy W with a precision of typically ± 5.2%. R is found to be constant with an average R = 4.01 ± 0.03 (stat) ± (syst.) for W ⩾ 14 GeV. Quarks are found to be point-like, the mass parameter describing a possible quark form-factor being larger than 186 GeV. Fits including QCD corrections and a weak neutral-current contribution are presented.
DATA OF RUNPERIOD 1.
DATA OF RUNPERIOD 2.
R MEASURED IN SCANNING MODE.
The total cross sections for νμn and νμp charged-current interactions and their ratio R=σT(νn)σT(νp) have been measured as a function of neutrino energy from 0.4 to 10 GeV. The experiment is performed using the BNL 7-foot deuterium bubble chamber exposed to the Alternating Gradient Synchrotron wide-band neutrino beam. The absolute values of the cross sections are normalized to the quasielastic scattering (νμn→μ−p) cross section. Above 1.6 GeV the data are consistent with the quark-parton model. We find that σT(νn)Eν=(1.07±0.05)×10−38, σT(νp)Eν=(0.54±0.04)×10−38, and σT(νN)Eν=(0.80±0.03)×10−38 cm2/GeV for 〈Eν〉=3.2 GeV, and R=1.95±0.10 for 〈Eν〉=3.7 GeV.
Axis error includes +- 0.0/0.0 contribution (?////SYSTEMATIC ERROR NOT GIVENNEUTRAL CURRENT AND NEUTRAL PARTICLES INDUCED REACTIONS, RESCATTERING IN DEUTERIUM).
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
We have studied the inclusive production of K*±(890) and Y*±(1385) in pp, π+p, and K+p interactions at 147 GeV/c. The experiment used the Fermilab 30-inch hydrogen bubble chamber with the hybrid spectrometer system. Results are based on a sample of 1916 observed KS and 932 observed A. Inclusive cross sections are given for K*± and Y*± production from the three beams, and comparisons are made with experiments at other energies. Feynman-x and transverse-momentum-squared distributions are also calculated. The results suggest that the K*− is entirely produced in the central region, while the K*+ includes a component from beam fragmentation. Comparisons are made with the additive quark model.
No description provided.
No description provided.
Narrow baryonium production in the baryon exchange reactions K − p → Λ p p and K − p → pK − p p at 18.5 GeV/ c is investigated in a 12 events/nb experiment performed at the CERN Ω′ spectrometer. No narrow structure is observed in the p p mass spectra. Upper limits for production of baryonium states are given as a function of p p mass.
'1'. (AP P) SYSTEM PRODUCED IN BACKWARD DIRECTION IN THE CMS.
'1'. (AP P) SYSTEM PRODUCED IN BACKWARD DIRECTION IN THE CMS.
A partial-wave analysis of the K 0 π + π − system from the reaction K − p → K 0 π + π − n has been carried out using data obtained at 8.25 GeV/ c in a high-statistics experiment. A strong signal appears in the 1 + SO + (K ∗ π) wave at the Q 2 mass (≈ 1.4 GeV). The 1 + S0 + (ϱK) wave behaves rather like a background and does not exhibit the characteristics of a resonance. A prominent signal also appears in the 2 + D wave (via K ∗ π and ϱK); it is interpreted as the K ∗ (1430). In the L region (1.6–2.1) GeV, there is evidence for the 3 − K ∗ (1780) while the 2 − wave also gives some contribution.
FULLY CORRECTED CROSS SECTION.
RESONANCE FITS CROSS SECTIONS USING BREIT WIGNER FUNCTION. NOTE THAT FOR THE K*(1780) THE CROSS SECTION DETERMINATION IS STRONGLY DEPENDENT ON THE BACKGROUND ASSUMED WHICH HAS BEEN ONLY SUBTRACTED AT 8.25 GEV.