Hadron - Nucleus Scattering at 70-GeV/c, 125-GeV/c and 175-GeV/c and a High Statistics Study of Hadron - Proton Elastic Scattering at 200-GeV/c

Schiz, Alan M. ; Sandweiss, Jack ;
FERMILAB-THESIS-1979-17, 1979.
Inspire Record 147258 DOI 10.17182/hepdata.155

Results of two studies of small angle elastic scattering are presented. The first experiment measured hadron-nucleus elastic scattering at 70, 125, 175 GeV/c incident momentum. The second experiment is a high statistics study of hadron-proton elastic scattering at 200 GeV/c incident momentum. Hadron-nucleus elastic scattering was measured for $\mu^{\pm}$, $K^{\pm}$, $p$, and $\bar{p}$ scatterinq from Be, C, Al, Cu, Sn, and Pb targets at .incident beam momenta of 70 and 175 GeV/c and for $\mu^+$, $K^+$, and $p$ scattering from Be, Al, and Pb targets at an incident beam momentum of 125 GeV/c. In all cases the minimum -t is 0.001 $(GeV/c)^2$ ; the maximum -t is 0.07, 0.16. 0.30 ($GeV/c)^2$ for incident beam momenta of 70, 125, 175 GeV/c respectively. Parameterizations of the differential cross section, $d\sigma/dt$, in the forward direction are presented....

111 data tables

X ERROR D(P)/P = 0.1000 PCT.

X ERROR D(P)/P = 0.1000 PCT.

X ERROR D(P)/P = 0.1000 PCT.

More…

The Real Part of the Forward Elastic Nuclear Amplitude for p p, anti-p p, pi+ p, pi- p, K+ p, and K- p Scattering Between 70-GeV/c and 200-GeV/c

Fajardo, L.A. ; Majka, R. ; Marx, J.N. ; et al.
Phys.Rev.D 24 (1981) 46, 1981.
Inspire Record 152596 DOI 10.17182/hepdata.24028

We have measured the elastic cross section for pp, p¯p, π+p, π−p, K+p, and K−p scattering at incident momenta of 70, 100, 125, 150, 175, and 200 GeV/c. The range of the four-momentum transfer squared t varied with the beam momentum from 0.0016≤−t≤0.36 (GeV/c)2 at 200 GeV/c to 0.0018≤−t≤0.0625 (GeV/c)2 at 70 GeV/c. The conventional parametrization of the t dependence of the nuclear amplitude by a simple exponential in t was found to be inadequate. An excellent fit to the data was obtained by a parametrization motivated by the additive quark model. Using this parametrization we determined the ratio of the real to the imaginary part of the nuclear amplitude by the Coulomb-interference method.

1 data table

No description provided.