A measurement of the proton structure function $F_{\!2}(x,Q~2)$ is reported for momentum transfer squared $Q~2$ between 4.5 $GeV~2$ and 1600 $GeV~2$ and for Bjorken $x$ between $1.8\cdot10~{-4}$ and 0.13 using data collected by the HERA experiment H1 in 1993. It is observed that $F_{\!2}$ increases significantly with decreasing $x$, confirming our previous measurement made with one tenth of the data available in this analysis. The $Q~2$ dependence is approximately logarithmic over the full kinematic range covered. The subsample of deep inelastic events with a large pseudo-rapidity gap in the hadronic energy flow close to the proton remnant is used to measure the "diffractive" contribution to $F_{\!2}$.
No description provided.
No description provided.
No description provided.
Jet rates in deep inelastic electron proton scattering are studied with the H1 detector at HERA for momentum transfers squared between 10 and 4000 GeV 2 . It is shown that they can be quantitatively described by perturbative QCD in next to leading order making use of the parton densities of the proton and with the strong coupling constant α s as a free parameter. The measured value, α s ( M Z 2 ) = 0.123 ± 0.018, is in agreement both with determinations from e + e − annihilation at LEP using the same observable and with the world average.
Determination of ALP_S(MZ**2). Error contains both statistics and systematics.
Global properties of the hadronic final state in deep inelastic scattering events at HERA are investigated. The data are corrected for detector effects and are compared directly with QCD phenomenology. Energy flows in both the laboratory frame and the hadronic centre of mass system and energy-energy correlations in the laboratory frame are presented. Comparing various QCD models, the colour dipole model provides the only satisfactory description of the data. In the hadronic centre of mass system the momentum components of charged particles longitudinal and transverse to the virtual boson direction are measured and compared with lower energy lepton-nucleon scattering data as well as withe+e− dat from LEP.
Overall systematic error of 6 pct not included.
Corrected transverse energy-energy correlation TEEC as a function of omega (see text of paper for definition of omega - which effectively defines the distance between hadrons in the pseudorapidity and azimuthal angle). Overall systematic error of 12 pct is not included.
Charged particle spectra as a function of the Feynman x variable for different ranges of the hadronic mass W.
Cross sections are presented for the inclusive production of charged particles measured in electron-proton collisions at low Q 2 with the H1 detector at HERA. The transverse momentum distribution extends up to 8 GeV/ c . Its shape is found to be harder than that observed in p p collisions at comparable centre-of-mass energies √S γp ≈ √S p p ≈ 200 GeV , and also harder than in γp collisions at lower energies √ S γp ≈ 18 GeV. Results from quantum chromodynamics (QCD) calculations agree with the measured transverse momentum and pseudorapidity cross sections.
No description provided.
No description provided.
The cross section of the charged current process e − p → v e + hadrons is measured at HERA for transverse momenta of the hadron system larger than 25 GeV. The size of the cross section exhibits the W propagator.
No description provided.
None
No description provided.
No description provided.
An analysis is presented of scaling violations of the proton structure function F 2 ( x , Q 2 ) measured with the H1 detector at HERA in the range of Bjorken x values between x = 3 × 10 −4 and 10 −2 for four-momentum transfers Q > 2 larger than 8.7 GeV 2 . The structure function F 2 ( x , Q 2 ) is observed to rise linearly with ln Q 2 . Under the assumption that the observed scaling violations at small x ⩽ 0.01 are described correctly by perturbative QCD, an estimate is obtained of the gluon distribution function G ( x , Q 0 2 ) at Q 2 2 = 20 GeV 2 .
No description provided.
A measurement of the proton structure function F 2 ( x , Q 2 ) is presented with about 1000 neutral current deep inelastic scattering events for Bjorken x in the range x ⋍ 10 −2 – 10 −4 and Q 2 > 5 GeV 2 . The measurement is based on an integrated luminosity of 22.5 nb −1 recorded by the H1 detector in the first year of HERA operation. The structure function F 2 ( x , Q 2 ) shows a significant rise with decreasing x .
No description provided.
No description provided.
No description provided.
We measure the Drell-Yan differential cross section d2σdMdy||y|<1 over the mass range 11<M<150 GeV/c2 using dielectron and dimuon data from p¯p collisions at a center-of-mass energy of s=1.8 TeV. Our results show the 1M3 dependence that is expected from the naive Drell-Yan model. In comparison to the predictions of recent QCD calculations we find our data favor those parton distribution functions with the largest quark contributions in the x interval 0.006 to 0.03.
Dielectron differential cross section.
Dimuon differential cross section.
Drell-Yan differential cross section for combined dielectron and dimuon data. Error includes both statistics and systematics.
We have measured the B0B¯0 mixing probability, χd, using a sample of 965 000 BB¯ pairs from Υ(4S) decays. Counting dilepton events, we find χd=0.157±0.016±0.018−0.021+0.028. Using tagged B0 events, we find χd=0.149±0.023±0.019±0.010. The first (second) error is statistical (systematic). The third error reflects a ±15% uncertainty in the assumption, made in both cases, that charged and neutral B pairs contribute equally to dilepton events. We also obtain a limit on the CP impurity in the Bd0 system, ‖Re(εB0)‖<0.045 at 90% C.L.
No description provided.
Mixing parameter from counting dilepton events. CONST(N=MIXING PARAM) = 1/(1 - LAMBDA(C,N)) * (N(2LEPTON+) + N(2LEPTON-))/(N(LEPTON+,LEPTON-) + N(2LEPTON+) + N(2LEPTON-)). LAMBDA(C,N) is the fraction of dilepton events coming from B+B- decays, LAMBDA(C,N) = f(B+)*Br(B+)**2/(f(B+)*Br(B+)**2 + f(B0)*Br(B0)**2), where f(B+),f(B0) are the productiron fractions of the charged and neutral B's at the UPSI(4S), and Br(B+), Br(B0) are the semileptonic brancing fractions.
Mixing parameter from tagged B0 events.