A search for exotic I=2 hyperons decaying into Σ−π− or Σ−π−π0 has been completed in the final states Σ−π+π− and Σ−π+π−π0 produced in K−n interactions at 2.87 GeV/c. Cross sections for these two final states are 303±31 μb and 660±66 μb, respectively. Upper limits for exotic processes are σ(K−n→Y*−−π+, Y*−−→Σ−π−)<13 μb and σ(K−n→Y*−−π+, Y*−−→Σ−π−π0)<23 μb for Γ(Y*−−)<120 MeV; σ(K−n→Y*−−π+π0, Y*−−→Σ−π−)<28 μb for Γ(Y*−−)<80 MeV. Production cross sections have also been measured for all nonexotic resonances observed in the two final states.
No description provided.
We have analyzed the reaction p¯n→π+π−π− in a deuterium bubble-chamber experiment for incident antiproton momenta between 1.09 and 1.43 GeV/c. Data are analyzed in terms of the Veneziano model. The magnitudes of the spin-parity functions are determined independently in an analysis of the spin-state composition of the p¯n system. The amount of each spin-dependent Veneziano amplitude is contrained to these values in the construction of a Veneziano model. The model is found to be generally in good agreement with the data. This represents a more rigorous test of the Veneziano model than previously published works.
FITTED FRACTIONS IN INCOHERENT SUM OF RESONANT CHANNELS.
The pion form factor is measured in the reaction e + e − → π + π − for center of mass energies in the range 480–1100 MeV. Our results are first analysed in terms of the conventional Vector Meson Dominance formalism, and then taking into account the ωπ inelastic channel. The result of this later formalism is a pion form factor ( F π ) which fits quite well all the existing data on F π both in the timelike and spacelike regions, and pion mean square radius of 〈 r π 2 〉 = 0.460 ± 0.011 fm 2 or 〈r π 2 〉 1 2 = 0.678 ± 0.008 fm .
No description provided.
An experiment using the PLUTO detector has observed the formation of a narrow, high mass, resonance in e + e − annihilations at the DORIS storage ring. The mass is determined to be 9.46±0.01 GeV which is consistent with that of the Upsilon. The gaussian width σ is observed as 8±1 MeV and is equal to the DORIS energy resolution. This suggests that the resonance is a bound state of a new heavy quark-antiquark pair. An electronic width Γ ee =1.3±0.4 keV was obtained. In standard theoretical models, this favors a quark charge assignment of 1 3 .
No description provided.
Results on backward (3 π ) - system produced in π - p→p f π + π - π - reaction at 9 and 12 GeV/ c are given. The ϱ 0 π - mass spectra show two clear signals at 1050 MeV (A 1 region) and 1303 MeV (A - 2 ). The width of the enhancement in the A 1 region (195±32 MeV) is narrower than found in diffractive experiments. Total backward cross sections for those signals are of the same order of magnitude (∼0.5 μb).
No description provided.
We present the observation of a J P = 4 + , I G = 1 − state in the reaction π − p → K S 0 K − p at 10 GeV/ c measured with a non-magnetic spectrometer at the CERN proton synchrotron (PS). A spherical harmonics moments analysis of the K S 0 K − system shows a signal at ∼ 1900 MeV in the 〈 Y 7 0 〉 and 〈 Y 8 0 〉 moments, indicative of a spin 4.
No description provided.
We perform an amplitude analysis of 10 GeV/ c π − p → K − K S 0 p data as a function of K − K 0 mass from threshold up to 2 GeV. We find that the A 2 and g resonances are produced dominantly by natural and unnatural parity exchange, respectively, and we determine their resonance parameters. We present further evidence for the I = 1, 4 + state A 2 ∗ (1900), in particular by isolating interference effects. The structure of S-wave K − K 0 production suggests an I = 1, 0 + state just below 1300 MeV of width about 250 MeV.
CROSS SECTIONS FROM FITTING MASS SPECTRUM. THE RESONANT AMPLITUDE CONTRIBUTIONS ALSO GIVEN IN PAPER.
We present differential cross-sections for pp elastic scattering at eight laboratory momenta from 1.50 to 2.06 GeV/c. The data are analysed using an 8-parameter optical modelà la Frahn and Venter. However, the best representation of the differential cross-sections is obtained by combining the glory model with a parametrization of the scattering amplitude in terms of coherent exponentials. Both representations show the dominance of the partial wave with orbital angular momentum equal to four.
No description provided.
The reaction\(\bar pp \to \bar \Lambda \Lambda \) has been studied in a bubble chamber experiment at eight incident momenta between 1.50 and 2.06 GeV/c. The differential cross-section, the polarization and the spin correlation coefficients have been measured. They have been compared with the prediction of two theoretical models: the K-meson conspiracy and the exchange of the K*K** degenerate trajectory associated with a Regge cut. The latter model gives the best representation of the data.
No description provided.
No description provided.
POLARIZATION AND SPIN CORRELATION COEFFICIENTS. AVERAGED OVER ALL ANGLES. SEE PAPER FOR DEFINITIONS, MORE DETAILS AND POSSIBLE T-DEPENDENCE.
The production of the φ and ω mesons has been studied in the reactions p p → φ(ω)π + π − and p p → φ(ω) ϱ 0 at 0.70–0.76 GeV /c . The c.m. angular distribution of the φ meson in the reaction p p → φπ + π − is found to be consistent with isotropy. The corresponding distribution for ω is not. the ratio σ( p p → φπ + π − ) σ( p p → ωπ + π − ) is (10 ± 2.4) · 10 −3 , which leads to a value of (19 ± 5) · 10 −3 when corrected for the phase-space factor. Implications of this result for the OZI rule are discussed.
No description provided.
No description provided.