Date

Measurement of inclusive jet cross section and substructure in $p$ $+$ $p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
2024.
Inspire Record 2820229 DOI 10.17182/hepdata.158374

The jet cross-section and jet-substructure observables in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV were measured by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC). Jets are reconstructed from charged-particle tracks and electromagnetic-calorimeter clusters using the anti-$k_{t}$ algorithm with a jet radius $R=0.3$ for jets with transverse momentum within $8.0

8 data tables

The jet differential cross section as a function of jet $p_T$. Statistical uncertainties are typically smaller than the data points while systematic uncertainties are shown with boxes. An overall normalization systematic of 7% is not included in the point-by-point systematic uncertainties.

Distribution of the SoftDrop groomed momentum fraction $z_g$ for different jet $p_T$ bins. Standard SoftDrop parameters were used ($z_{cut}<0.1$ and $\beta=0$).

$\xi$ distributions for different jet $p_T$ bins.

More…

The azimuthal correlation between the leading jet and the scattered lepton in deep inelastic scattering at HERA

The ZEUS collaboration Abt, I. ; Aggarwal, R. ; Aushev, V. ; et al.
Eur.Phys.J.C 84 (2024) 1334, 2024.
Inspire Record 2794054 DOI 10.17182/hepdata.153487

The azimuthal correlation angle, $\Delta\phi$, between the scattered lepton and the leading jet in deep inelastic $e^{\pm}p$ scattering at HERA has been studied using data collected with the ZEUS detector at a centre-of-mass energy of $\sqrt{s} = 318 \;\mathrm{GeV}$, corresponding to an integrated luminosity of $326 \;\mathrm{pb}^{-1}$. A measurement of jet cross sections in the laboratory frame was made in a fiducial region corresponding to photon virtuality $10 \;\mathrm{GeV}^2 < Q^2 < 350 \;\mathrm{GeV}^2$, inelasticity $0.04 < y < 0.7$, outgoing lepton energy $E_e > 10 \;\mathrm{GeV}$, lepton polar angle $140^\circ < \theta_e < 180^\circ$, jet transverse momentum $2.5 \;\mathrm{GeV} < p_\mathrm{T,jet} < 30 \;\mathrm{GeV}$, and jet pseudorapidity $-1.5 < \eta_\mathrm{jet} < 1.8$. Jets were reconstructed using the $k_\mathrm{T}$ algorithm with the radius parameter $R = 1$. The leading jet in an event is defined as the jet that carries the highest $p_\mathrm{T,jet}$. Differential cross sections, $d\sigma/d\Delta\phi$, were measured as a function of the azimuthal correlation angle in various ranges of leading-jet transverse momentum, photon virtuality and jet multiplicity. Perturbative calculations at $\mathcal{O}(\alpha_{s}^2)$ accuracy successfully describe the data within the fiducial region, although a lower level of agreement is observed near $\Delta\phi \rightarrow \pi$ for events with high jet multiplicity, due to limitations of the perturbative approach in describing soft phenomena in QCD. The data are equally well described by Monte Carlo predictions that supplement leading-order matrix elements with parton showering.

45 data tables

<b>Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file, containing relative uncertainties as in the paper, is available via the 'Resources' button above.</b> Inclusive measurement of the differential cross sections, $d\sigma/d\Delta\phi$, as obtained from the data, ARIADNE MC simulations, and perturbative calculations at $\mathcal{O}(\alpha_{s})$ and $\mathcal{O}(\alpha_{s}^{2})$ accuracy. The effect of initial- and final-state radiation has been corrected in data, based on a simulation study performed in the RAPGAP framework. The quantities $\delta_\mathrm{stat}$ and $\delta_\mathrm{syst}$ represent the statistical and systematic uncertainties relative to the central value, respectively. The uncertainty in the luminosity measurement ($1.9\%$) is not included in these values. The quantities $\delta(\mathcal{O}(\alpha_{s}^{k}))$ represent the combined uncertainty of the scale dependence in the calculation and the model dependence in the hadronisation correction in the $\mathcal{O}(\alpha_{s}^{k})$ calculations.

<b>Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file, containing relative uncertainties as in the paper, is available via the 'Resources' button above.</b> Differential cross sections, $d\sigma/d\Delta\phi$, in the $p_{T,jet}^{lead}$ region of $2.5 \;\mathrm{GeV} < p_{T,jet}^{lead} < 7 \;\mathrm{GeV}$ for $N_{jet} \geq 1$, as obtained from the data, ARIADNE MC simulations, and perturbative calculations at $\mathcal{O}(\alpha_{s})$ and $\mathcal{O}(\alpha_{s}^{2})$ accuracy. Other details are as in the caption to Table 1.

<b>Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file, containing relative uncertainties as in the paper, is available via the 'Resources' button above.</b> Differential cross sections, $d\sigma/d\Delta\phi$, in the $p_{T,jet}^{lead}$ region of $2.5 \;\mathrm{GeV} < p_{T,jet}^{lead} < 7 \;\mathrm{GeV}$ for $N_{jet} \geq 2$, as obtained from the data, ARIADNE MC simulations, and perturbative calculations at $\mathcal{O}(\alpha_{s})$ and $\mathcal{O}(\alpha_{s}^{2})$ accuracy. Other details are as in the caption to Table 1.

More…

Measurement of the $e^+e^- \to \pi^+\pi^-\pi^0$ cross section in the energy range 0.62-3.50 GeV at Belle II

The Belle-II collaboration Adachi, I. ; Aggarwal, L. ; Aihara, H. ; et al.
Phys.Rev.D 110 (2024) 112005, 2024.
Inspire Record 2775022 DOI 10.17182/hepdata.155340

We report a measurement of the $e^+e^- \to \pi^+\pi^-\pi^0$ cross section in the energy range from 0.62 to 3.50 GeV using an initial-state radiation technique. We use an $e^+e^-$ data sample corresponding to 191 $\text{fb}^{-1}$ of integrated luminosity, collected at a center-of-mass energy at or near the $\Upsilon{(4S)}$ resonance with the Belle II detector at the SuperKEKB collider. Signal yields are extracted by fitting the two-photon mass distribution in $e^+e^- \to \pi^+\pi^-\pi^0\gamma$ events, which involve a $\pi^0 \to \gamma\gamma$ decay and an energetic photon radiated from the initial state. Signal efficiency corrections with an accuracy of 1.6% are obtained from several control data samples. The uncertainty on the cross section at the $\omega$ and $\phi$ resonances is dominated by the systematic uncertainty of 2.2%. The resulting cross sections in the 0.62-1.80 GeV energy range yield $ a_\mu^{3\pi} = [48.91 \pm 0.23~(\mathrm{stat}) \pm 1.07~(\mathrm{syst})] \times 10^{-10} $ for the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. This result differs by $2.5$ standard deviations from the most precise current determination.

5 data tables

Energy bin range ($\sqrt{s'}$), number of events after unfolding ($N_{\mathrm{unf}}$), corrected efficiency ($\varepsilon$), and cross section ($\sigma_{3\pi}$) for $e^{+}e^{-} \to \pi^{+} \pi^{-} \pi^{0}$ in energy range 0.62--1.05~GeV. The two uncertainties in the cross section are the statistical and systematic contributions. The statistical uncertainties for the unfolding and cross section are square roots of the diagonal components of the unfolding covariance matrix. The image shows Figure 23 in the PRD paper, and the points with error bars indicate the cross section in the table.

Energy bin range ($\sqrt{s'}$), number of events after unfolding ($N_{\mathrm{unf}}$), corrected efficiency ($\varepsilon$), and cross section ($\sigma_{3\pi}$) for $e^{+}e^{-} \to \pi^{+} \pi^{-} \pi^{0}$ in energy range 1.05--3.50~GeV. The two uncertainties in the cross section are the statistical and systematic contributions. The statistical uncertainties for the unfolding and cross section are square roots of the diagonal components of the unfolding covariance matrix. The image shows Figure 23 in the PRD paper, and the points with error bars indicate the cross section in the table.

The statistic covariance matrix for the $e^+e^- \to \pi^+ \pi^- \pi^0$ cross section measurement at the Belle II. The 212 x 212 matrix of the energy ranges from 0.62 to 3.50 GeV. This covariance matrix, obtained by propagating the covariance matrix in the unfolding procedure, shows the total statistical uncertainties for the cross section results.

More…

Combination of measurements of the top quark mass from data collected by the ATLAS and CMS experiments at $\sqrt{s}=7$ and 8 TeV

The ATLAS & CMS collaborations Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 132 (2024) 261902, 2024.
Inspire Record 2789110 DOI 10.17182/hepdata.143309

A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The data sets used correspond to an integrated luminosity of up to 5 and 20$^{-1}$ of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak $t$-channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is $m_\mathrm{t}$ = 172.52 $\pm$ 0.14 (stat) $\pm$ 0.30 (syst) GeV, with a total uncertainty of 0.33 GeV.

1 data table

Uncertainties on the $m_{t}$ values extracted in the LHC, ATLAS, and CMS combinations arising from the categories described in the text, sorted in order of decreasing value of the combined LHC uncertainty.


Improved measurements of the Dalitz decays $\eta/\eta'\rightarrow\gamma e^{+}e^{-}$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Adlarson, P. ; et al.
Phys.Rev.D 109 (2024) 072001, 2024.
Inspire Record 2747714 DOI 10.17182/hepdata.157334

Based on a data sample of 10 billion $J/\psi$ events collected with the BESIII detector, improved measurements of the Dalitz decays $\eta/\eta'\rightarrow\gamma e^+e^-$ are performed, where the $\eta$ and $\eta'$ are produced through the radiative decays $J/\psi\rightarrow\gamma \eta/\eta'$. The branching fractions of $\eta\rightarrow\gamma e^+e^-$ and $\eta'\rightarrow\gamma e^+e^-$ are measured to be $(7.07 \pm 0.05 \pm 0.23)\times10^{-3}$ and $(4.83\pm0.07\pm0.14)\times10^{-4}$, respectively. Within the single pole model, the parameter of electromagnetic transition form factor for $\eta\rightarrow\gamma e^+e^-$ is determined to be $\Lambda_{\eta}=(0.749 \pm 0.027 \pm 0.007)~ {\rm GeV}/c^{2}$. Within the multi-pole model, we extract the electromagnetic transition form factors for $\eta'\rightarrow\gamma e^+e^-$ to be $\Lambda_{\eta'} = (0.802 \pm 0.007\pm 0.008)~ {\rm GeV}/c^{2}$ and $\gamma_{\eta'} = (0.113\pm0.010\pm0.002)~ {\rm GeV}/c^{2}$. The results are consistent with both theoretical predictions and previous measurements. The characteristic sizes of the interaction regions for the $\eta$ and $\eta'$ are calculated to be $(0.645 \pm 0.023 \pm 0.007 )~ {\rm fm}$ and $(0.596 \pm 0.005 \pm 0.006)~ {\rm fm}$, respectively. In addition, we search for the dark photon in $\eta/\eta^\prime\rightarrow\gamma e^{+}e^{-}$, and the upper limits of the branching fractions as a function of the dark photon are given at 90% confidence level.

2 data tables

The binned invariant mass spectrum of $e^+e^-$ pairs produced from the $\eta\to \gamma e^+e^-$ transition. The efficiency-corrected and background-subtracted data are binned in M($e^+e^-$) and the number of events in each bin is shown.

The binned invariant mass spectrum of $e^+e^-$ pairs produced from the $\eta^\prime\to \gamma e^+e^-$ transition. The efficiency-corrected and background-subtracted data are binned in M($e^+e^-$) and the number of events in each bin is shown.


Observation of the Anomalous Shape of $X(1840)$ in $J/\psi \rightarrow \gamma 3(\pi^+ \pi^-)$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Adlarson, P. ; et al.
Phys.Rev.Lett. 132 (2024) 151901, 2024.
Inspire Record 2714792 DOI 10.17182/hepdata.153469

Using a sample of $(10087\pm44)\times 10^6$$J/\psi$ events, which is about 45 times larger than that was previously analyzed, a further investigation on the $J/\psi\rightarrow \gamma 3(\pi^+\pi^-)$ decay is performed. A significant distortion at 1.84 GeV/$c^2$ in the line-shape of the $3(\pi^+\pi^-)$ invariant mass spectrum is observed for the first time, which could be resolved by two overlapping resonant structures, $X(1840)$ and $X(1880)$. The new state $X(1880)$ is observed with a statistical significance larger than $10\sigma$. The mass and width of $X(1880)$ are determined to be $1882.1\pm1.7\pm0.7$ MeV/$c^2$ and $30.7\pm5.5 \pm2.4$ MeV, respectively, which indicates the existence of a $p\bar{p}$ bound state.

1 data table

The binned invariant mass spectrum of 6pi. The data correspond to Figure 3 of the event sample collected by BESIII. The mass range 1.55 < M(6pi) < 2.07 GeV is subdivided into 130 equidistant M(6pi) bins with a width of 4 MeV. The binned mass spectrum has been corrected by efficiency and the background Jpsi -> pi0 3(pi+ pi-) has been removed.


Determination of $|V_{cb}|$ using $\overline{B}^0\to D^{*+}\ell^-\bar\nu_\ell$ decays with Belle II

The Belle-II collaboration Adachi, I. ; Adamczyk, K. ; Aggarwal, L. ; et al.
Phys.Rev.D 108 (2023) 092013, 2023.
Inspire Record 2705370 DOI 10.17182/hepdata.145129

We determine the CKM matrix-element magnitude $|V_{cb}|$ using $\overline{B}^0\to D^{*+}\ell^-\bar\nu_\ell$ decays reconstructed in $189 \, \mathrm{fb}^{-1}$ of collision data collected by the Belle II experiment, located at the SuperKEKB $e^+e^-$ collider. Partial decay rates are reported as functions of the recoil parameter $w$ and three decay angles separately for electron and muon final states. We obtain $|V_{cb}|$ using the Boyd-Grinstein-Lebed and Caprini-Lellouch-Neubert parametrizations, and find $|V_{cb}|_\mathrm{BGL}=(40.57\pm 0.31 \pm 0.95\pm 0.58)\times 10^{-3}$ and $|V_{cb}|_\mathrm{CLN}=(40.13 \pm 0.27 \pm 0.93\pm 0.58 )\times 10^{-3}$ with the uncertainties denoting statistical components, systematic components, and components from the lattice QCD input, respectively. The branching fraction is measured to be ${\cal B}(\overline{B}^0\to D^{*+}\ell^-\bar\nu_\ell)=(4.922 \pm 0.023 \pm 0.220)\%$. The ratio of branching fractions for electron and muon final states is found to be $0.998 \pm 0.009 \pm 0.020$. In addition, we determine the forward-backward angular asymmetry and the $D^{*+}$ longitudinal polarization fractions. All results are compatible with lepton-flavor universality in the Standard Model.

8 data tables

Measured partial decay rates $\Delta\Gamma$ (in units of $10^{-15}$ GeV)

Average of normalized decay rates over $\overline{B}^0\to D^{*+} e^- \bar\nu_e$ and $\overline{B}^0\to D^{*+} \mu^- \bar\nu_\mu$ decays

Full experimental (statistical and systematic) correlations (in \%) of the partial decay rates for the $\overline{B}^0\to D^{*+} e^- \bar\nu_e$ and $\overline{B}^0\to D^{*+} \mu^- \bar\nu_\mu$ decays.

More…

Evidence for the Higgs boson decay to a $Z$ boson and a photon at the LHC

The ATLAS & CMS collaborations Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.Lett. 132 (2024) 021803, 2024.
Inspire Record 2666787 DOI 10.17182/hepdata.142406

The first evidence for the Higgs boson decay to a $Z$ boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision data sets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140 fb$^{-1}$ for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is $2.2\pm0.7$ times the Standard Model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.

1 data table

The negative profile log-likelihood test statistic, where $\Lambda$ represents the likelihood ratio, as a function of the signal strength $\mu$ derived from the ATLAS data, the CMS data, and the combined result.


Version 2
Measurement of jet production in deep inelastic scattering and NNLO determination of the strong coupling at ZEUS

The ZEUS collaboration Abt, I. ; Aggarwal, R. ; Aushev, V. ; et al.
Eur.Phys.J.C 83 (2023) 1082, 2023.
Inspire Record 2694205 DOI 10.17182/hepdata.145637

A new measurement of inclusive-jet cross sections in the Breit frame in neutral current deep inelastic scattering using the ZEUS detector at the HERA collider is presented. The data were taken in the years 2004 to 2007 at a centre-of-mass energy of $318\,\text{GeV}$ and correspond to an integrated luminosity of $347\,\text{pb}^{-1}$. Massless jets, reconstructed using the $k_t$-algorithm in the Breit reference frame, have been measured as a function of the squared momentum transfer, $Q^2$, and the transverse momentum of the jets in the Breit frame, $p_{\perp,\text{Breit}}$. The measured jet cross sections are compared to previous measurements and to perturbative QCD predictions. The measurement has been used in a next-to-next-to-leading-order QCD analysis to perform a simultaneous determination of parton distribution functions of the proton and the strong coupling, resulting in a value of $\alpha_s(M_Z^2) = 0.1142 \pm 0.0017~\text{(experimental/fit)}$${}^{+0.0006}_{-0.0007}~\text{(model/parameterisation)}$${}^{+0.0006}_{-0.0004}~\text{(scale)}$, whose accuracy is improved compared to similar measurements. In addition, the running of the strong coupling is demonstrated using data obtained at different scales.

7 data tables

<b>Note: in the paper, uncertainties are given in percent. The HEPData table contains absolute numbers. The original data file, containing relative uncertainties as in the paper, is available via the 'Resources' button above.</b> Double-differential inclusive-jet cross sections, $\sigma$. Also listed are the unfolding uncertainty $\delta_\text{unf}$, the sum of the uncorrelated systematic uncertainties $\delta_\text{uncor}$ and the correlated systematic uncertainties associated with the jet-energy scale $\delta_\text{JES}$, the MC model $\delta_\text{model}$, the relative normalisation of the background from unmatched detector-level jets $\delta_\text{fake}$, the relative normalisation of the background from low-$Q^2$ DIS events $\delta_\text{Low-$Q^2$}$, the $(E-p_\text{Z})$-cut boundaries $\delta_{E-p_\text{Z}}$, the track-matching-efficiency correction $\delta_\text{TME}$. Uncertainties for which a single number is listed should be taken as symmetric in the other direction. Not listed explicitly is the luminosity uncertainty of $1.9\%$, which is fully correlated across all points. The last four columns show the QED Born-level correction $c_\text{QED}$ that has been applied to the data as well as the $Z$, $c_Z$, and hadronisation correction $c_\text{Had}$ and associated uncertainty that need to be applied to the theory predictions.

<b>Note: in the paper, uncertainties are given in percent. The HEPData table contains absolute numbers. The original data file, containing relative uncertainties as in the paper, is available via the 'Resources' button above.</b> Breakdown of the uncorrelated uncertainty $\delta_\text{uncor}$ from Table 1. Shown are the uncertainties associated with the reweighting of the MC models ($\delta_\text{rew.}$), the electron-energy scale ($\delta_\text{EES}$), the electron-finding algorithm ($\delta_\text{EM}$), the electron calibration ($\delta_\text{EL}$), the variation of the $p_{T,\text{lab}}$ cut of the jets ($\delta_{p_T}$), the variation of the electron-track momentum-cut boundaries ($\delta_\text{trk.}$), the variation of the $p_T/\sqrt{E_T}$-cut boundaries ($\delta_\text{bal.}$), the variation of the $Z_\text{vertex}$-cut boundaries ($\delta_\text{vtx.}$), the variation of the $R_\text{RCAL}$-cut boundaries ($\delta_\text{rad.}$), the variation of the electron-track distance-cut boundaries ($\delta_\text{DCA}$), the relative normalisation of the background from photoproduction events ($\delta_\text{PHP}$), the polarisation correction ($\delta_\text{pol.}$), the FLT track-veto-efficiency correction ($\delta_\text{FLT}$) and the correction to QED Born-level ($\delta_\text{QED}$). For the asymmetric uncertainties, the upper number corresponds to the upward variation of the corresponding parameter and the lower number corresponds to the downward variation.

Correlation matrix of the unfolding uncertainty within the inclusive-jet cross-section measurement. Correlations are given in percent.

More…

Search for Dark Photons with the FASER detector at the LHC

The FASER collaboration Abreu, Henso ; Anders, John ; Antel, Claire ; et al.
Phys.Lett.B 848 (2024) 138378, 2024.
Inspire Record 2687000 DOI 10.17182/hepdata.143251

The FASER experiment at the LHC is designed to search for light, weakly-interacting particles produced in proton-proton collisions at the ATLAS interaction point that travel in the far-forward direction. The first results from a search for dark photons decaying to an electron-positron pair, using a dataset corresponding to an integrated luminosity of 27.0 fb$^{-1}$ collected at center-of-mass energy $\sqrt{s} = 13.6$ TeV in 2022 in LHC Run 3, are presented. No events are seen in an almost background-free analysis, yielding world-leading constraints on dark photons with couplings $\epsilon \sim 2 \times 10^{-5} - 1 \times 10^{-4}$ and masses $\sim$ 17 MeV - 70 MeV. The analysis is also used to probe the parameter space of a massive gauge boson from a U(1)$_{B-L}$ model, with couplings $g_{B-L} \sim 5 \times 10^{-6} - 2 \times 10^{-5}$ and masses $\sim$ 15 MeV - 40 MeV excluded for the first time.

5 data tables

90% confidence level observed exclusion contour in the dark photon parameter space.

90% confidence level observed exclusion contour in the dark photon parameter space.

90% confidence level expected exclusion contour in the B-L gauge boson parameter space.

More…