The associated production of a W and a Z boson is studied in final states with multiple leptons produced in proton-proton (pp) collisions at a centre-of-mass energy of 13 TeV using 137 fb$^{-1}$ of data collected with the CMS detector at the LHC. A measurement of the total inclusive production cross section yields $\sigma_{\text{tot}}$(pp $\to$ WZ) = 50.6 $\pm$ 0.8 (stat) $\pm$ 1.5 (syst) $\pm$ 1.1 (lumi) $\pm$ 0.5 (theo) pb. Measurements of the fiducial and differential cross sections for several key observables are also performed in all the final-state lepton flavour and charge compositions with a total of three charged leptons, which can be electrons or muons. All results are compared with theoretical predictions computed up to next-to-next-to-leading order in quantum chromodynamics plus next-to-leading order in electroweak theory and for various sets of parton distribution functions. The results include direct measurements of the charge asymmetry and the W and Z vector boson polarization. The first observation of longitudinally polarized W bosons in WZ production is reported. Anomalous gauge couplings are searched for, leading to new constraints on beyond-the-standard-model contributions to the WZ triple gauge coupling.
Distribution of the three leading leptons flavour in the CR-ZZ with uncertainties evaluated after the inclusive cross section fit
Distribution of the jet multiplicity in the CR-ttZ with uncertainties evaluated after the inclusive cross section fit
Distribution of the three leading leptons flavour in the CR-conv with uncertainties evaluated after the inclusive cross section fit
The differential cross-section of prompt inclusive production of long-lived charged particles in proton-proton collisions is measured using a data sample recorded by the LHCb experiment at a centre-of-mass energy of ${\sqrt{s} = 13\,\mathrm{TeV}}$. The data sample, collected with an unbiased trigger, corresponds to an integrated luminosity of ${5.4\,\mathrm{nb}^{-1}}$. The differential cross-section is measured as a function of transverse momentum and pseudorapidity in the ranges ${p_\mathrm{T} \in [0.08, 10)\,\mathrm{GeV}\,c^{-1}}$ and ${\eta \in [2.0, 4.8)}$ and is determined separately for positively and negatively charged particles. The results are compared with predictions from various hadronic-interaction models.
Double differential cross-sections of prompt inclusive production of long-lived negatively charged particles as a function of transverse momentum and pseudorapidity.
Double differential cross-sections of prompt inclusive production of long-lived positively charged particles as a function of transverse momentum and pseudorapidity.
Correlation for the uncertainties of the differential cross-section of prompt inclusive production of long-lived charged particles.
Measurements of the second Fourier harmonic coefficient ($v_2$) of the azimuthal distributions of prompt and nonprompt D$^0$ mesons produced in pp and pPb collisions are presented. Nonprompt D$^0$ mesons come from beauty hadron decays. The data samples are collected by the CMS experiment at nucleon-nucleon center-of-mass energies of 13 and 8.16 TeV, respectively. In high multiplicity pp collisions, $v_2$ signals for prompt charm hadrons are reported for the first time, and are found to be comparable to those for light-flavor hadron species over a transverse momentum ($p_\mathrm{T}$) range of 2-6 GeV. Compared at similar event multiplicities, the prompt D$^0$ meson $v_2$ values in pp and pPb collisions are similar in magnitude. The $v_2$ values for open beauty hadrons are extracted for the first time via nonprompt D$^0$ mesons in pPb collisions. For $p_\mathrm{T}$ in the range of 2-5 GeV, the results suggest that $v_2$ for nonprompt D$^0$ mesons are smaller than those for prompt D$^0$ mesons. These new measurements indicate a positive charm hadron $v_2$ in pp collisions and suggest a mass dependence in $v_2$ between charm and beauty hadrons in the pPb system. These results provide insights into the origin of heavy-flavor quark collectivity in small systems.
Results of elliptic flow, corrected for short range correlations, for prompt neutral D mesons, as a function of transverse momenta for $|y_{lab}|< 1$, with $N^{offline}_{trk} \geq 100$ in pp collisions at 13 TeV.
Results of elliptic flow, corrected for short range correlations, for prompt neutral D mesons, as a function of multiplicity for $|y_{lab}|< 1$, with 2$ < p_{T} < $4 GeV in pp collisions at 13 TeV.
Results of elliptic flow, corrected for short range correlations, for prompt neutral D mesons, as a function of multiplicity for $|y_{lab}|< 1$, with 4$ < p_{T} < $6 GeV in pp collisions at 13 TeV.
A measurement of the inclusive cross section of top quark pair production in association with a Z boson using proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC is performed. The data sample corresponds to an integrated luminosity of 77.5 fb$^{-1}$, collected by the CMS experiment during 2016 and 2017. The measurement is performed using final states containing three or four charged leptons (electrons or muons), and the Z boson is detected through its decay to an oppositely charged lepton pair. The production cross section is measured to be $\sigma(\mathrm{t\bar{t}Z})$ $=$ 0.95 $\pm$ 0.05 (stat) $\pm$ 0.06 (syst) pb. For the first time, differential cross sections are measured as functions of the transverse momentum of the Z boson and the angular distribution of the negatively charged lepton from the Z boson decay. The most stringent direct limits to date on the anomalous couplings of the top quark to the Z boson are presented, including constraints on the Wilson coefficients in the framework of the standard model effective field theory.
Measured absolute differential tt̄Z production cross section in the full phase space as a function of the transverse momentum of the Z boson, compared to the predictions obtained with the MadGraph5_aMC@NLO MC simulation, and to the theory prediction at NLO+NNLL accuracy (1905.07815). The distribution $Δσ$ is integrated over the bin, and $\mathrm{d}σ/\mathrm{d}p_{\mathrm{T}}(\mathrm{Z})$ is additionally divided by the bin width. The last bin includes the overflow contribution, but a finite bin width is used for the normalization.
Measured normalized differential tt̄Z production cross section in the full phase space as a function of the transverse momentum of the Z boson, compared to the predictions obtained with the MadGraph5_aMC@NLO MC simulation, and to the theory prediction at NLO+NNLL accuracy (1905.07815). The distribution $1/σ\,Δσ$ is integrated over the bin, and $1/σ\,\mathrm{d}σ/\mathrm{d}p_{\mathrm{T}}(\mathrm{Z})$ is additionally divided by the bin width. The last bin includes the overflow contribution, but a finite bin width is used for the normalization.
Measured absolute differential tt̄Z production cross section in the full phase space as a function of $\cosθ^{*}_{\mathrm{Z}}$, compared to the predictions obtained with the MadGraph5_aMC@NLO MC simulation.
A measurement of the elliptic flow ($v_2$) of prompt J/$\psi$ mesons in high-multiplicity pPb collisions is reported using data collected by the CMS experiment at a nucleon-nucleon center-of-mass energy $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV. Prompt J/$\psi$ mesons decaying into two muons are reconstructed in the rapidity region in the nucleon-nucleon center-of-mass frame ($y_\mathrm{cm}$), corresponding to either $-$2.86 $\lt y_{\mathrm{cm}} <$ $-$1.86 or 0.94 $\lt y_{\mathrm{cm}} <$ 1.94. The average $v_2$ result from the two rapidity ranges is reported over the transverse momentum (p$_\mathrm{T}$) range from 0.2 to 10 GeV. Positive $v_2$ values are observed for the prompt J/$\psi$ meson, as extracted from long-range two-particle correlations with charged hadrons, for 2 $\lt p_{\mathrm{T}}<$ 8 GeV. The prompt J/$\psi$ results are compared with previous CMS measurements of elliptic flow for open charm mesons (D$^0$) and strange hadrons. From these measurements, constraints can be obtained on the collective dynamics of charm quarks produced in high-multiplicity events arising from small systems.
The elliptic flow, $v_2$, for prompt $\mathrm{J}/\psi$ mesons as a function of $p_{\mathrm{T}}$ in pPb collision at 8.16 TeV.
The elliptic flow corrected for residual jet correlations, $v_2^{\mathrm{sub}}$, for prompt $\mathrm{J}/\psi$ mesons as a function of $p_{\mathrm{T}}$ in pPb collision at 8.16 TeV.
The elliptic flow per constituent quark corrected for residual jet correlations, $v_2^{\mathrm{sub}}/n_q$, for prompt $\mathrm{J}/\psi$ mesons as a function of transverse kinetic energy per constituent quark in pPb collision at 8.16 TeV.
The elliptic azimuthal anisotropy coefficient ($v_2$) is measured for charm (D$^0$) and strange (K$_\mathrm{S}^0$, $\Lambda$, $\Xi^-$, and $\Omega^-$) hadrons, using a data sample of pPb collisions collected by the CMS experiment, at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_\mathrm{NN}}} =$ 8.16 TeV. A significant positive $v_2$ signal from long-range azimuthal correlations is observed for all particle species in high-multiplicity pPb collisions. The measurement represents the first observation of possible long-range collectivity for open heavy flavor hadrons in small systems. The results suggest that charm quarks have a smaller $v_2$ than the lighter quarks, probably reflecting a weaker collective behavior. This effect is not seen in the larger PbPb collision system at $\sqrt{s_{_\mathrm{NN}}} =$ 5.02 TeV, also presented.
The elliptic flow, $v_{2}$, for $K^{0}_{S}$ as a function of $p_{T}$ in pPb collision at 8.16 TeV.
The elliptic flow, $v_{2}$, for $\Lambda$ as a function of $p_{T}$ in pPb collision at 8.16 TeV.
The elliptic flow, $v_{2}$, for $\Xi^{-}$ as a function of $p_{T}$ in pPb collision at 8.16 TeV.
Detailed measurements of $t$-channel single top-quark production are presented. They use 20.2 fb$^{-1}$ of data collected by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8 % (top quark) and 7.8 % (top antiquark), respectively. The total cross-sections are measured to be $\sigma_{\mathrm{tot}}(tq) = 56.7^{+4.3}_{-3.8}\;$pb for top-quark production and $\sigma_{\mathrm{tot}}(\bar{t}q) = 32.9^{+3.0}_{-2.7}\;$pb for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be $R_t=1.72 \pm 0.09$, with an improved relative precision of 4.9 % since several systematic uncertainties cancel in the ratio. The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the $t$-channel scattering are measured at particle level. All measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available.
Predicted and observed event yields for the signal region (SR). The multijet background prediction is obtained from a binned maximum-likelihood fit to the $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution. All the other predictions are derived using theoretical cross-sections, given for the backgrounds in Sect. 6 and for the signal in Sect. 1. The quoted uncertainties are in the predicted cross-sections or in the number of multijet events, in case of the multijet process.
Definition of the fiducial phase space.
The seven input variables to the NN ordered by their discriminating power. The jet that is not $b$-tagged is referred to as $\textit{untagged}~$jet.
Measurements of the differential branching fraction and angular moments of the decay $B^0 \to K^+ \pi^- \mu^+ \mu^-$ in the $K^+\pi^-$ invariant mass range $1330<m(K^+ \pi^-)<1530~MeV/c^2$ are presented. Proton-proton collision data are used, corresponding to an integrated luminosity of 3 $fb^{-1}$ collected by the LHCb experiment. Differential branching fraction measurements are reported in five bins of the invariant mass squared of the dimuon system, $q^2$, between 0.1 and 8.0 $GeV^2/c^4$. For the first time, an angular analysis sensitive to the S-, P- and D-wave contributions of this rare decay is performed. The set of 40 normalised angular moments describing the decay is presented for the $q^2$ range 1.1--6.0 $GeV^2/c^4$.
: Differential branching fraction of $B^0 \to K^+ \pi^- \mu^+ \mu^-$ in bins of $q^2$ for the range $1330<m(K^+ \pi^-)<1530~MeV/c^2$. The first uncertainty is statistical, the second systematic and the third due to the uncertainty on the $B^0 \to J/\psi K^*(892)^0$ and $J/\psi \to \mu\mu$ branching fractions.
Measurement of the normalised moments, $\overline{\Gamma}_{i}$, of the decay $B^0 \to K^+ \pi^- \mu^+ \mu^-$ in the range $1.1< q^2<6.0 GeV^2/c^4$ and $1330<m(K^+ \pi^-)<1530~MeV/c^2$. The first uncertainty is statistical and the second systematic.
Full covariance matrix of the normalised moments. The statistical and systematic uncertainties are combined.
An angular analysis of the $B^{0}\rightarrow K^{*0}(\rightarrow K^{+}\pi^{-})\mu^{+}\mu^{-}$ decay is presented. The dataset corresponds to an integrated luminosity of $3.0\,{\mbox{fb}^{-1}}$ of $pp$ collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine $C\!P$-averaged observables and $C\!P$ asymmetries, taking account of possible contamination from decays with the $K^{+}\pi^{-}$ system in an S-wave configuration. The angular observables and their correlations are reported in bins of $q^2$, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for $q^2$-dependent decay amplitudes in the region $1.1<q^{2}<6.0\mathrm{\,Ge\kern -0.1em V}^{2}/c^{4}$, the zero-crossing points of several angular observables are computed. A global fit is performed to the complete set of $C\!P$-averaged observables obtained from the maximum likelihood fit. This fit indicates differences with predictions based on the Standard Model at the level of 3.4 standard deviations. These differences could be explained by contributions from physics beyond the Standard Model, or by an unexpectedly large hadronic effect that is not accounted for in the Standard Model predictions.
CP-averaged angular observables evaluated by the unbinned maximum likelihood fit.
CP-averaged angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.
CP-asymmetric angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.
Measurements are presented of electroweak boson production using data from $pp$ collisions at a centre-of-mass energy of $\sqrt{s} = 8\mathrm{\,Te\kern -0.1em V}$. The analysis is based on an integrated luminosity of $2.0\mathrm{\,fb}^{-1}$ recorded with the LHCb detector. The bosons are identified in the $W\rightarrow\mu\nu$ and $Z\rightarrow\mu^{+}\mu^{-}$ decay channels. The cross-sections are measured for muons in the pseudorapidity range $2.0 < \eta < 4.5$, with transverse momenta $p_{\rm T} > 20{\mathrm{\,Ge\kern -0.1em V\!/}c}$ and, in the case of the $Z$ boson, a dimuon mass within $60 < M_{\mu^{+}\mu^{-}} < 120{\mathrm{\,Ge\kern -0.1em V\!/}c^{2}}$. The results are \begin{align*} \sigma_{W^{+}\rightarrow\mu^{+}\nu} &= 1093.6 \pm 2.1 \pm 7.2 \pm 10.9 \pm 12.7{\rm \,pb} \, , \sigma_{W^{-}\rightarrow\mu^{-}\bar{\nu}} &= \phantom{0}818.4 \pm 1.9 \pm 5.0 \pm \phantom{0}7.0 \pm \phantom{0}9.5{\rm \,pb} \, , \sigma_{Z\rightarrow\mu^{+}\mu^{-}} &= \phantom{00}95.0 \pm 0.3 \pm 0.7 \pm \phantom{0}1.1 \pm \phantom{0}1.1{\rm \,pb} \, , \end{align*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. The evolution of the $W$ and $Z$ boson cross-sections with centre-of-mass energy is studied using previously reported measurements with $1.0\mathrm{\,fb}^{-1}$ of data at $7\mathrm{\,Te\kern -0.1em V}$. Differential distributions are also presented. Results are in good agreement with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics.
Inclusive cross-section for $W^+$ and $W^-$ boson production in bins of muon pseudorapidity. The uncertainties are statistical, systematic, beam and luminosity.
Inclusive cross-section for $Z$ boson production in bins of rapidity. The uncertainties are statistical, systematic, beam and luminosity.
Inclusive cross-section for $Z$ boson production in bins of transverse momentum. The uncertainties are statistical, systematic, beam and luminosity.