Photoproduction of J / psi mesons at HERA

The H1 collaboration Ahmed, T. ; Aid, S. ; Andreev, V. ; et al.
Phys.Lett.B 338 (1994) 507-518, 1994.
Inspire Record 376566 DOI 10.17182/hepdata.45103

We present a study of J ψ meson production in collisions of 26.7 GeV electrons with 820 GeV protons, performed with the H1-detector at the HERA collider at DESY. The J ψ mesons are detected via their leptonic decays both to electrons and muons. Requiring exactly two particles in the detector, a cross section of σ(ep → J ψ X) = (8.8±2.0±2.2) nb is determined for 30 GeV ≤ W γp ≤ 180 GeV and Q 2 ≲ 4 GeV 2 . Using the flux of quasi-real photons with Q 2 ≲ 4 GeV 2 , a total production cross section of σ ( γp → J / ψX ) = (56±13±14) nb is derived at an average W γp =90 GeV. The distribution of the squared momentum transfer t from the proton to the J ψ can be fitted using an exponential exp(− b ∥ t ∥) below a ∥ t ∥ of 0.75 GeV 2 yielding a slope parameter of b = (4.7±1.9) GeV −2 .

4 data tables

No description provided.

No description provided.

QED background subtracted.

More…

Inclusive charged particle cross-sections in photoproduction at HERA

The H1 collaboration Abt, I. ; Ahmed, T. ; Andreev, V. ; et al.
Phys.Lett.B 328 (1994) 176-186, 1994.
Inspire Record 372256 DOI 10.17182/hepdata.45105

Cross sections are presented for the inclusive production of charged particles measured in electron-proton collisions at low Q 2 with the H1 detector at HERA. The transverse momentum distribution extends up to 8 GeV/ c . Its shape is found to be harder than that observed in p p collisions at comparable centre-of-mass energies √S γp ≈ √S p p ≈ 200 GeV , and also harder than in γp collisions at lower energies √ S γp ≈ 18 GeV. Results from quantum chromodynamics (QCD) calculations agree with the measured transverse momentum and pseudorapidity cross sections.

2 data tables

No description provided.

No description provided.


Determination of the longitudinal proton structure function F(L)(x,Q**2) at low x.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Phys.Lett.B 393 (1997) 452-464, 1997.
Inspire Record 426362 DOI 10.17182/hepdata.44694

A measurement of the inclusive cross section for the deep-inelastic scattering of positrons off protons at HERA is presented at momentum transfers $8.5 \leq Q~2 \leq 35 GeV~2$ and large inelasticity $y = 0.7$, i.e. for the Bjorken-x range $0.00013 \leq x \leq 0.00055$. Using a next-to-leading order QCD fit to the structure function F_2 at lower y values, the contribution of F_2 to the measured cross section at high y is calculated and, by subtraction, the longitudinal structure function F_{L} is determined for the first time with an average value of $F_L=0.52 \pm 0.03 (stat)$~ {+0.25}_{-0.22}$ (syst) at $Q~2=15.4 GeV~2$ and $x=0.000243$.

3 data tables

Inclusive cross section scaled by the kinematic factor K given by:. X*Q**4/((2*PI*ALPHA**2)*Y+). Y+=2(1-Y)+Y**2.

F2 values corresponding to the cross section measurements. X*Q**4/((2*PI*ALPHA**2)*Y+). Y+=2(1-Y)+Y**2.

Longitudinal structure function measurements.


Scale influence on the energy dependence of photon proton cross sections.

The H1 collaboration Aid, S. ; Anderson, M. ; Andreev, V. ; et al.
Phys.Lett.B 392 (1997) 234-242, 1997.
Inspire Record 425598 DOI 10.17182/hepdata.44707

The scale dependence of the evolution of photoproduction cross sections with the photon-proton centre of mass energy W is studied using low Q~2 < 0.01 GeV~2 e~+p interactions collected by the H1 experiment at HERA. The value of the largest transverse momentum of a charged particle in the photon fragmentation region is used to define the hard scale. The slope of the $W$ dependence of the cross section is observed to increase steeply with increasing transverse momentum. The result is compared to measurements of the Q~2 evolution of the W dependence of the virtual photon-proton cross section. Interpretations in terms of QCD and in terms of Regge phenomenology are discussed.

1 data table

The gamma p cross section is parameterized as CONST*(W**2)**POWER.


Measurement of charged particle transverse momentum spectra in deep inelastic scattering.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Nucl.Phys.B 485 (1997) 3-24, 1997.
Inspire Record 424463 DOI 10.17182/hepdata.44710

Transverse momentum spectra of charged particles produced in deep inelastic scattering are measured as a function of the kinematic variables x_B and Q2 using the H1 detector at the ep collider HERA. The data are compared to different parton emission models, either with or without ordering of the emissions in transverse momentum. The data provide evidence for a relatively large amount of parton radiation between the current and the remnant systems.

48 data tables

Charged particle PT distribution in the pseudorapidity interval 1.5 to 2.5.

Charged particle PT distribution in the pseudorapidity interval 1.5 to 2.5.

Charged particle PT distribution in the pseudorapidity interval 1.5 to 2.5.

More…

Energy flow and charged particle spectrum in deep inelastic scattering at HERA

The H1 collaboration Abt, I. ; Ahmed, T. ; Andreev, V. ; et al.
Z.Phys.C 63 (1994) 377-390, 1994.
Inspire Record 372350 DOI 10.17182/hepdata.45101

Global properties of the hadronic final state in deep inelastic scattering events at HERA are investigated. The data are corrected for detector effects and are compared directly with QCD phenomenology. Energy flows in both the laboratory frame and the hadronic centre of mass system and energy-energy correlations in the laboratory frame are presented. Comparing various QCD models, the colour dipole model provides the only satisfactory description of the data. In the hadronic centre of mass system the momentum components of charged particles longitudinal and transverse to the virtual boson direction are measured and compared with lower energy lepton-nucleon scattering data as well as withe+e− dat from LEP.

4 data tables

Overall systematic error of 6 pct not included.

Corrected transverse energy-energy correlation TEEC as a function of omega (see text of paper for definition of omega - which effectively defines the distance between hadrons in the pseudorapidity and azimuthal angle). Overall systematic error of 12 pct is not included.

Charged particle spectra as a function of the Feynman x variable for different ranges of the hadronic mass W.

More…

Measurement of event shape variables in deep inelastic e p scattering.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Phys.Lett.B 406 (1997) 256-270, 1997.
Inspire Record 443753 DOI 10.17182/hepdata.23948

Deep inelastic e^+ scattering data, taken with the H1 detector at HERA, are used to study the event shape variables thrust, jet broadening and jet mass in the current hemisphere of the Breit frame over a large range of momentum transfers Q between 7 GeV and 100 GeV. The data are compared with results from e^+e^- experiments. Using second order QCD calculations and an approach to relate hadronisation effects to power corrections an analysis of the Q dependences of the means of the event shape parameters is presented, from which both the power corrections and the strong coupling constant are determined without any assumption on fragmentation models. The power corrections of all event shape variables investigated follow a 1/Q behaviour and can be described by a common parameter alpha_0.

6 data tables

The data on the differential event shape distrubutions are shown only as a illustration to show the agreement with the Lepto and pQCD calculations and contain only statistical errors. The authors are preparing another paper which details these differential distributions including full point-to-point systematics.

Usual definition of Thrust.

The same as usual thrust definition but with the thrust axis replaced by the current hemisphere axis (0,0,-1), where positive Z direction coincide with theincoming proton beam direction.

More…

First measurement of the charged current cross-section at HERA

The H1 collaboration Ahmed, T. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 324 (1994) 241-248, 1994.
Inspire Record 371597 DOI 10.17182/hepdata.45134

The cross section of the charged current process e − p → v e + hadrons is measured at HERA for transverse momenta of the hadron system larger than 25 GeV. The size of the cross section exhibits the W propagator.

1 data table

No description provided.


A Measurement of the proton structure function f2 (x, Q**2)

The H1 collaboration Ahmed, T. ; Aid, S. ; Akhundov, Arif A. ; et al.
Nucl.Phys.B 439 (1995) 471-502, 1995.
Inspire Record 392680 DOI 10.17182/hepdata.45046

A measurement of the proton structure function $F_{\!2}(x,Q~2)$ is reported for momentum transfer squared $Q~2$ between 4.5 $GeV~2$ and 1600 $GeV~2$ and for Bjorken $x$ between $1.8\cdot10~{-4}$ and 0.13 using data collected by the HERA experiment H1 in 1993. It is observed that $F_{\!2}$ increases significantly with decreasing $x$, confirming our previous measurement made with one tenth of the data available in this analysis. The $Q~2$ dependence is approximately logarithmic over the full kinematic range covered. The subsample of deep inelastic events with a large pseudo-rapidity gap in the hadronic energy flow close to the proton remnant is used to measure the "diffractive" contribution to $F_{\!2}$.

20 data tables

No description provided.

No description provided.

No description provided.

More…

Scaling violations of the proton structure function f2 at small x

The H1 collaboration Abt, I. ; Ahmed, T. ; Andreev, V. ; et al.
Phys.Lett.B 321 (1994) 161-167, 1994.
Inspire Record 360235 DOI 10.17182/hepdata.45140

An analysis is presented of scaling violations of the proton structure function F 2 ( x , Q 2 ) measured with the H1 detector at HERA in the range of Bjorken x values between x = 3 × 10 −4 and 10 −2 for four-momentum transfers Q > 2 larger than 8.7 GeV 2 . The structure function F 2 ( x , Q 2 ) is observed to rise linearly with ln Q 2 . Under the assumption that the observed scaling violations at small x ⩽ 0.01 are described correctly by perturbative QCD, an estimate is obtained of the gluon distribution function G ( x , Q 0 2 ) at Q 2 2 = 20 GeV 2 .

1 data table

No description provided.