New experimental results are presented on proton-proton elastic scattering in the range of momentum transfer 4 GeV 2 < − t < 10 GeV 2 at the centre-of-mass energy of √ s = 53 GeV. The data have been obtained using the Split-Field Magnet detector at the CERN Intersecting Storage Rings. We observe another change of slope of the differential cross section near − t =6.5 GeV 2 .
NUMERICAL VALUES SUPPLIED BY K. WINTER.
New experimental results are presented on proton-proton elastic scattering in the range of momentum transfer 0.8GeV 2 < − t < 9 GeV 2 at a centre-of-mass energy of √ s = 53 GeV. The data are obtained sing the Split-Field- Magnet Detector at the CERN Intersecting Storage Rings. The cross section has well-known minimum at − t = (1.34±0.02) GeV 2 but no further minimum or change of slope is observed between 2 and 6.5 GeV 2 .
Axis error includes +- 0.0/0.0 contribution (?////THE QUOTED ERRORS ARE THE QUADRATIC SUM OF STATISTICAL AND ESTIMATED SYSTEMATIC ERRORS. THE SYSTEMATIC ERRORS ARE NOT INDEPENDENT FROM BIN TO BIN).
New experimental results are presented on proton-proton elastic scattering at centre-of-mass energies s =23 GeV and s =62 GeV . The data are obtained using the Split Field Magnet detector at the CERN Intersecting Storage Rings. The absolute differential cross-sections show an energy-dependent behaviour. The position of the diffraction minimum changes from t =(−1.44±0.02)GeV 2 at 23 GeV to (−1.26±0.03)GeV 2 at 62 GeV. The cross-section at the second maximum is increasing with s . The connection of these observations with the hypothesis of “geometrical scaling” is discussed.
63 K EVENTS.
380 K EVENTS.
Final results of our measurements of elastic proton-proton scattering at the CERN Intersecting Storage Rings (ISR) for c.m. energies √ s from 23 to 63 GeV and momentum transfers | t | from 0.8 to 10 GeV 2 are presented. Absolute differential cross sections have been obtained using the split-field magnet detector facility (SFM) at the five standard energies for integrated luminosities ranging from 0.3 to 4.9 (pb) −1 . The rising total cross section is found to define a scale for diffractive phenomena near the forward peak, including the position of the diffraction minimum near t = −1.4 GeV 2 . The cross section at the minimum is strongly energy dependent, approximately as the ratio of the real to imaginary part of the scattering amplitude in the forward direction. The phase of the scattering amplitude is found to change sign near the minimum. The component of diffraction scattering beyond the second maximum has a much weaker t -dependence than expected in simple eikonal or constituent pictures connecting this region to the forward peak. A further break in slope is observed near t = −6 GeV 2 . There is no evidence for another minimum for t values up to 10 GeV 2 .
No description provided.
No description provided.
No description provided.
This paper contains a critical review of all the data produced at the ISR on proton-proton elastic scattering and total cross sections. This coherent and complete set of data is used to compute the impact parameter distribution of the proton-proton inelastic overlap integral. This impact parameter analysis has smaller errors than any other previously made, and confirms the good agreement with the geometrical scaling model while strongly disagreeing with models based on factorizing eikonals. For the first time we find indications of a second contribution to the peripheral rising of the proton-proton cross section in a region around 2.2 fm.
The differential cross section as a function of T for elastic P P scattering at a centre of mass energy of 23.5 GeV.
The differential cross section as a function of T for elastic P P scattering at a centre of mass energy of 30.7 GeV.
The differential cross section as a function of T for elastic P P scattering at a centre of mass energy of 44.7 GeV.
The STAR Collaboration reports on the photoproduction of $\pi^+\pi^-$ pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly-real photon emitted by one ion scatters from the other ion. We fit the $\pi^+\pi^-$ invariant mass spectrum with a combination of $\rho$ and $\omega$ resonances and a direct $\pi^+\pi^-$ continuum. This is the first observation of the $\omega$ in ultra-peripheral collisions, and the first measurement of $\rho-\omega$ interference at energies where photoproduction is dominated by Pomeron exchange. The $\omega$ amplitude is consistent with the measured $\gamma p\rightarrow \omega p$ cross section, a classical Glauber calculation and the $\omega\rightarrow\pi^+\pi^-$ branching ratio. The $\omega$ phase angle is similar to that observed at much lower energies, showing that the $\rho-\omega$ phase difference does not depend significantly on photon energy. The $\rho^0$ differential cross section $d\sigma/dt$ exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with 2 minima visible. The positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.
The $\pi^+\pi^-$ invariant-mass distribution for all selected $\pi\pi$ candidates with $p_T~<~100~\textrm{MeV}/c$.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the present STAR analysis.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the previous STAR analysis, Phys. Rev. C 77 034910 (2008).
A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=7$ TeV is presented. In a special run with high-$\beta^{\star}$ beam optics, an integrated luminosity of 80 $\mu$b$^{-1}$ was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $|t|$ range from 0.01 GeV$^2$ to 0.1 GeV$^2$ to extrapolate to $|t|\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $$\sigma_{\mathrm{tot}}(pp\rightarrow X) = 95.35 \; \pm 0.38 \; ({\mbox{stat.}}) \pm 1.25 \; ({\mbox{exp.}}) \pm 0.37 \; (\mbox{extr.}) \; \mbox{mb},$$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to $|t|\rightarrow 0$. In addition, the slope of the elastic cross section at small $|t|$ is determined to be $B = 19.73 \pm 0.14 \; ({\mbox{stat.}}) \pm 0.26 \; ({\mbox{syst.}}) \; \mbox{GeV}^{-2}$.
The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The Optical Point dsigma/(elastic)/dt(t-->0), the total elastic cross section and the observed elastic cross section within the fiducial volume. The first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
Results of a high-statistics study of elastic scattering and meson resonances produced by π−p interactions at 8 GeV/c are presented. Large statistics and small systematic errors permit examination of the complete kinematic region. Total differential cross sections are given for ρ0,−, f0, g0,−, Δ±, Δ0, and N* resonances. Spin-density matrix elements and Legendre-polynomial moments are given for ρ, f, and Δ resonances. The results for ρ0 and f0 resonances are compared with the predictions of a Regge-pole-exchange model. Properties of the above resonances are compared and discussed. In particular, we present evidence that the ρ0 and f0 production mechanisms are similar. The similarity of the g0 t distribution to that of the ρ0 and f0 suggests a common production mechanism for all three resonances.
No description provided.
No description provided.
SLOPE REFERS TO EXPONENTIAL FIT IN U.
Photon diffractive dissociation, $\gamma p \to Xp$, has been studied at HERA with the ZEUS detector using $ep$ interactions where the virtuality $Q^2$ of the exchanged photon is smaller than 0.02 GeV$^2$. The squared four-momentum $t$ exchanged at the proton vertex was determined in the range $0.073<|t|<0.40$ GeV$^2$ by measuring the scattered proton in the ZEUS Leading Proton Spectrometer. In the photon-proton centre-of-mass energy interval $176
T is the squared four momentum transfer at the proton vertex.
SLOPE of the DN/DT distribution.
Results are presented onK+p elastic scattering and on the reactionK+p→K+pπ+π− at 70 GeV/c. For the
.
.
INTEGRATION OVER RANGE OF ABS(T) FROM 0 TO 1 GEV.