We have measured the partial widths for the three reactions e + e − → Z 0 → e + e − , μ + μ − , τ + τ − . The results are Γ ee = 84.3±1.3 MeV, √ Γ ee Γ μμ =83.9±1.4 MeV, and √ Γ ee Γ ττ =83.9±1.4 MeV, where the errors are statistical. The systematic errors are estimated to be 1.0 MeV, 0.9 MeV, and 1.4 MeV, respectively. We perform a simultaneous fit to the cross sections for the e + e − →e + e − , μ + μ − , and τ + τ − data, the differential cross section as a function of polar angle for the electron data, and the forward- backward asymmetry for the muon data. We obtain the leptonic partial with Γ ℓℓ =84.0±0.9 (stat.) MeV. The systematic error is estimated to be 0.8 MeV. Also, we obtain the axial-vector and vector weak coupling constants of charged leptons, g A =−0.500±0.003 and g ν =−0.064 −0.013 +0.017 .
Cross section from 1990 data.
Visible cross section obtained using the cuts required by Method I (see text of paper). (1989 and 1990 data).
Visible cross section obtained using the cuts required by Method II (see text of paper). (1989 and 1990 data). RE = E+ E- --> E+ E- (GAMMA).
We report on the properties of theZ resonance from 62 500Z decays into fermion pairs collected with the ALEPH detector at LEP, the Large Electron-Positron storage ring at CERN. We findMZ=(91.193±0.016exp±0.030LEP) GeV, ΓZ=(2497±31) MeV, σhad0=(41.86±0.66)nb, and for the partial widths Γinv=(489±24) MeV, Γhad(1754±27) MeV, Γee=(85.0±1.6)MeV, Γμμ=(80.0±2.5) MeV, and Γττ=(81.3±2.5) MeV, all in good agreement with the Standard Model. Assuming lepton universality and using a lepton sample without distinction of the final state we measure Γu=(84.3±1.3) MeV. The forward-backward asymmetry in leptonic decays is used to determine the vector and axial-vector weak coupling constants of leptors,gv2(MZ2)=(0.12±0.12)×10−2 andgA2(MZ2)=0.2528±0.0040. The number of light neutrino species isNν=2.91±0.13; the electroweak mixing angle is sin2θW(MZ2)=0.2291±0.0040.
Hadronic cross section from the charged track selection trigger.
Hadronic cross section from the calorimeter selection trigger.
Averaged hadronic cross section.
We have measured the partial width and forward-backward charge asymmetry for the reaction e + e - →Z 0 →μ + μ - (γ). We obtain a partial width Γ μμ of 83.3±1.3(stat)±0.9(sys) MeV and the following values for the vector and axial vector couplings: g v =−0.062 −0.015 +0.020 and g A =−0.497 −0.005 +0.005 . From our measurement of the partial width and the mass of the Z 0 boson we determine the effective electroweak mixing angle, sin 2 θ w =0.232±0.005, and the neutral current coupling strength parameter, ϱ =0.998±0.016.
No description provided.
Forward backward charge asymmetry.
No description provided.
None
No description provided.
No description provided.
No description provided.
We have measured both the rates and the forward-backward asymmetry of ℓ + ℓ − from Z 0 →ℓ + ℓ − (where ℓ= μ , τ ) with the L3 detector. We obtained Γ ℓℓ =88±4±3 MeV and the vector neutral current coupling constant, g v =0.00±0.07 and the axial vector neutral current coupling constant, g A =−0.515±0.015.
No description provided.
No description provided.
We report on high statistics Bhabha scattering data taken with the TASSO experiment at PETRA at center of mass energies from 12 GeV to 46.8 GeV. We present an analysis in terms of electroweak parameters of the standard model, give limits on QED cut-off parameters and look for possible signs of compositeness.
Axis error includes +- 1/1 contribution (The overall uncertainty in the bin-to-bin polar acceptance due to shower corrections, trigger and reconstruction efficiencies was estimated to be less than 1% and was added in quadrature to the statistical errorsData have been corrected for qed radiative effects up to order alpha**3 (F.A.Berends, R.Kleiss, Nucl.Phys.B206(1983)61)//Weak radiative corrections have not yet been provided in a form of a Monte Carlo generator program, but are estimated to be negligible at PETRA energies (M.Bohm, A.Denner, W.Hollik, DESY-86-165)).
Axis error includes +- 1/1 contribution (The overall uncertainty in the bin-to-bin polar acceptance due to shower corrections, trigger and reconstruction efficiencies was estimated to be less than 1% and was added in quadrature to the statistical errorsData have been corrected for qed radiative effects up to order alpha**3 (F.A.Berends, R.Kleiss, Nucl.Phys.B206(1983)61)//Weak radiative corrections have not yet been provided in a form of a Monte Carlo generator program, but are estimated to be negligible at PETRA energies (M.Bohm, A.Denner, W.Hollik, DESY-86-165)).
Axis error includes +- 1/1 contribution (The overall uncertainty in the bin-to-bin polar acceptance due to shower corrections, trigger and reconstruction efficiencies was estimated to be less than 1% and was added in quadrature to the statistical errorsData have been corrected for qed radiative effects up to order alpha**3 (F.A.Berends, R.Kleiss, Nucl.Phys.B206(1983)61)//Weak radiative corrections have not yet been provided in a form of a Monte Carlo generator program, but are estimated to be negligible at PETRA energies (M.Bohm, A.Denner, W.Hollik, DESY-86-165)).
We have measured the inclusive prompt electron cross section over a wide momentum range (P>0.5 GeV/c) with the PEP-4 TPC detector. The semielectronic branching fractions of thec andb quarks are (9.1±0.9 (stat.)±1.3 (syst.))% and (11.0±1.8±1.0)%, respectively. Theb quark fragmentation function peaks at highz with 〈zb〉=0.74±0.05±0.03. The axial couplings to the neutral current areac=2.3±1.4±1.0 for thec quark andab=−2.0±1.9±0.5 for theb quark.
No description provided.
No description provided.
No description provided.
The differential cross sections for lepton pair production in e+e− annihilation at 29 GeV have been measured and found to be in good agreement with the standard model of the electroweak interaction. With the assumption of e−μ−τ universality, the weak neutral-current couplings are determined to be ga2=0.23±0.05 and gv2=0.03±0.04.
Numerical values supplied by M.Levi.
Data requested from authors.
Extrapolated to full angular range.