Strangeness Enhancement in Cu+Cu and Au+Au Collisions at \sqrt{s_{NN}} = 200 GeV

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 108 (2012) 072301, 2012.
Inspire Record 918779 DOI 10.17182/hepdata.95886

We report new STAR measurements of mid-rapidity yields for the $\Lambda$, $\bar{\Lambda}$, $K^{0}_{S}$, $\Xi^{-}$, $\bar{\Xi}^{+}$, $\Omega^{-}$, $\bar{\Omega}^{+}$ particles in Cu+Cu collisions at \sNN{200}, and mid-rapidity yields for the $\Lambda$, $\bar{\Lambda}$, $K^{0}_{S}$ particles in Au+Au at \sNN{200}. We show that at a given number of participating nucleons, the production of strange hadrons is higher in Cu+Cu collisions than in Au+Au collisions at the same center-of-mass energy. We find that aspects of the enhancement factors for all particles can be described by a parameterization based on the fraction of participants that undergo multiple collisions.

2 data tables match query

$K^0_S$ invariant mass spectra from Au+Au $\sqrt{s_{NN}} = 200$ GeV collisions, where $|y| < 0.5$. The uncertainties on the spectra points are statistical and systematic combined.

$\Lambda$ and $\bar{\Lambda}$ invariant mass spectra from Au+Au $\sqrt{s_{NN}} = 200$ GeV collisions, where $|y| < 0.5$. The $\Lambda$ and $\bar{\Lambda}$ yields have not been feed down subtracted from weak decays. The uncertainties on the spectra points are statistical and systematic combined.


Identified hadron compositions in p+p and Au+Au collisions at high transverse momenta at $\sqrt{s_{_{NN}}} = 200$ GeV

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 108 (2012) 072302, 2012.
Inspire Record 930463 DOI 10.17182/hepdata.95749

We report transverse momentum ($p_{T} \leq15$ GeV/$c$) spectra of $\pi^{\pm}$, $K^{\pm}$, $p$, $\bar{p}$, $K_{S}^{0}$, and $\rho^{0}$ at mid-rapidity in p+p and Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. Perturbative QCD calculations are consistent with $\pi^{\pm}$ spectra in p+p collisions but do not reproduce $K$ and $p(\bar{p})$ spectra. The observed decreasing antiparticle-to-particle ratios with increasing $p_T$ provide experimental evidence for varying quark and gluon jet contributions to high-$p_T$ hadron yields. The relative hadron abundances in Au+Au at $p_{T}{}^{>}_{\sim}8$ GeV/$c$ are measured to be similar to the p+p results, despite the expected Casimir effect for parton energy loss.

16 data tables match query

The invariant yields $d^2N/(2\pi p_T dp_T dy)$ of $\pi^{\pm}$, $K^{\pm}$, $p$, and $\bar{p}$ from non-singly diffractive p+p collisions ($\sigma_{NSD} = 30.0 \pm 3.5$ mb), and NLO calculations with AKK [9] and DSS [10] FF. The uncertainty of yields due to the scale dependence as evaluated in [10] is about a factor of 2. Bars and boxes (bands) represent statistical and systematic uncertainties, respectively.

The invariant yields $d^2N/(2\pi p_T dp_T dy)$ of $K^0_S$ from non-singly diffractive p+p collisions ($\sigma_{NSD} = 30.0 \pm 3.5$ mb), and NLO calculations with AKK [9] and DSS [10] FF. The uncertainty of yields due to the scale dependence as evaluated in [10] is about a factor of 2. Bars and boxes (bands) represent statistical and systematic uncertainties, respectively.

The invariant yields $d^2N/(2\pi p_T dp_T dy)$ of $\rho^0$ from non-singly diffractive p+p collisions ($\sigma_{NSD} = 30.0 \pm 3.5$ mb), and NLO calculations with AKK [9] and DSS [10] FF. The uncertainty of yields due to the scale dependence as evaluated in [10] is about a factor of 2. Bars and boxes (bands) represent statistical and systematic uncertainties, respectively.

More…

Azimuthal anisotropy in U+U and Au+Au collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 115 (2015) 222301, 2015.
Inspire Record 1373553 DOI 10.17182/hepdata.71502

Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, $v_2\{2\}$ and $v_2\{4\}$, for charged hadrons from U+U collisions at $\sqrt{s_{\rm NN}}$ = 193 GeV and Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV. Nearly fully overlapping collisions are selected based on the amount of energy deposited by spectators in the STAR Zero Degree Calorimeters (ZDCs). Within this sample, the observed dependence of $v_2\{2\}$ on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions. An initial-state model with gluon saturation describes the slope of $v_2\{2\}$ as a function of multiplicity in central collisions better than one based on Glauber with a two-component multiplicity model.

0 data tables match query

Beam-Energy Dependence of Charge Balance Functions from Au+Au Collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 94 (2016) 024909, 2016.
Inspire Record 1382600 DOI 10.17182/hepdata.99053

Balance functions have been measured in terms of relative pseudorapidity ($\Delta \eta$) for charged particle pairs at the Relativistic Heavy-Ion Collider (RHIC) from Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the Large Hadron Collider (LHC) from Pb+Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at $\sqrt{s_{\rm NN}}$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.

0 data tables match query

Version 2
Global $\Lambda$ hyperon polarization in nuclear collisions: evidence for the most vortical fluid

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Nature 548 (2017) 62-65, 2017.
Inspire Record 1510474 DOI 10.17182/hepdata.77494

The extreme temperatures and energy densities generated by ultra-relativistic collisions between heavy nuclei produce a state of matter with surprising fluid properties. Non-central collisions have angular momentum on the order of 1000$\hbar$, and the resulting fluid may have a strong vortical structure that must be understood to properly describe the fluid. It is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have so far been found. Here we present the first measurement of an alignment between the angular momentum of a non-central collision and the spin of emitted particles, revealing that the fluid produced in heavy ion collisions is by far the most vortical system ever observed. We find that $\Lambda$ and $\overline{\Lambda}$ hyperons show a positive polarization of the order of a few percent, consistent with some hydrodynamic predictions. A previous measurement that reported a null result at higher collision energies is seen to be consistent with the trend of our new observations, though with larger statistical uncertainties. These data provide the first experimental access to the vortical structure of the "perfect fluid" created in a heavy ion collision. They should prove valuable in the development of hydrodynamic models that quantitatively connect observations to the theory of the Strong Force. Our results extend the recent discovery of hydrodynamic spin alignment to the subatomic realm.

0 data tables match query

Third Harmonic Flow of Charged Particles in Au+Au Collisions at sqrtsNN = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 88 (2013) 014904, 2013.
Inspire Record 1210062 DOI 10.17182/hepdata.96234

We report measurements of the third harmonic coefficient of the azimuthal anisotropy, v_3, known as triangular flow. The analysis is for charged particles in Au+Au collisions at sqrtsNN = 200 GeV, based on data from the STAR experiment at the Relativistic Heavy Ion Collider. Two-particle correlations as a function of their pseudorapidity separation are fit with narrow and wide Gaussians. Measurements of triangular flow are extracted from the wide Gaussian, from two-particle cumulants with a pseudorapidity gap, and also from event plane analysis methods with a large pseudorapidity gap between the particles and the event plane. These results are reported as a function of transverse momentum and centrality. A large dependence on the pseudorapidity gap is found. Results are compared with other experiments and model calculations.

0 data tables match query

$J/\psi$ polarization in p+p collisions at $\sqrt{s}$ = 200 GeV in STAR

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 739 (2014) 180-188, 2014.
Inspire Record 1263695 DOI 10.17182/hepdata.96232

We report on a polarization measurement of inclusive $J/\psi$ mesons in the di-electron decay channel at mid-rapidity at 2 $

0 data tables match query

Dielectron Mass Spectra from Au+Au Collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 113 (2014) 022301, 2014.
Inspire Record 1275614 DOI 10.17182/hepdata.95663

We report the STAR measurements of dielectron ($e^+e^-$) production at midrapidity ($|y_{ee}|<$1) in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200\,GeV. The measurements are evaluated in different invariant mass regions with a focus on 0.30-0.76 ($\rho$-like), 0.76-0.80 ($\omega$-like), and 0.98-1.05 ($\phi$-like) GeV/$c^{2}$. The spectrum in the $\omega$-like and $\phi$-like regions can be well described by the hadronic cocktail simulation. In the $\rho$-like region, however, the vacuum $\rho$ spectral function cannot describe the shape of the dielectron excess. In this range, an enhancement of 1.77$\pm$0.11(stat.)$\pm$0.24(sys.)$\pm$0.33(cocktail) is determined with respect to the hadronic cocktail simulation that excludes the $\rho$ meson. The excess yield in the $\rho$-like region increases with the number of collision participants faster than the $\omega$ and $\phi$ yields. Theoretical models with broadened $\rho$ contributions through interactions with constituents in the hot QCD medium provide a consistent description of the dilepton mass spectra for the measurement presented here and the earlier data at the Super Proton Synchrotron energies.

0 data tables match query

$\rho^{0}$ Photoproduction in AuAu Collisions at $\sqrt{s_{NN}}$=62.4 GeV with STAR

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 85 (2012) 014910, 2012.
Inspire Record 919778 DOI 10.17182/hepdata.101342

Vector mesons may be photoproduced in relativistic heavy-ion collisions when a virtual photon emitted by one nucleus scatters from the other nucleus, emerging as a vector meson. The STAR Collaboration has previously presented measurements of coherent $\rho^0$ photoproduction at center of mass energies of 130 GeV and 200 GeV in AuAu collisions. Here, we present a measurement of the cross section at 62.4 GeV; we find that the cross section for coherent $\rho^0$ photoproduction with nuclear breakup is $10.5\pm1.5\pm 1.6$ mb at 62.4 GeV. The cross-section ratio between 200 GeV and 62.4 GeV is $2.8\pm0.6$, less than is predicted by most theoretical models. It is, however, proportionally much larger than the previously observed $15\pm 55$% increase between 130 GeV and 200 GeV.

0 data tables match query

Strangeness Production in $\sqrt{s_{\rm NN}}=3$ GeV Au+Au Collisions at RHIC

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
JHEP 10 (2024) 139, 2024.
Inspire Record 2807679 DOI 10.17182/hepdata.153884

We report multi-differential measurements of strange hadron production ranging from mid- to target-rapidity in Au+Au collisions at a center-of-momentum energy per nucleon pair of $\sqrt{s_{\rm NN}}=3$ GeV with the STAR experiment at RHIC. $K^0_S$ meson and $\Lambda$ hyperon yields are measured via their weak decay channels. Collision centrality and rapidity dependences of the transverse momentum spectra and particle ratios are presented. Particle mass and centrality dependence of the average transverse momenta of $\Lambda$ and $K^0_S$ are compared with other strange particles, providing evidence of the development of hadronic rescattering in such collisions. The 4$\pi$ yields of each of these strange hadrons show a consistent centrality dependence. Discussions on radial flow, the strange hadron production mechanism, and properties of the medium created in such collisions are presented together with results from hadronic transport and thermal model calculations.

0 data tables match query